

Coimisiún na Scrúduithe Stáit State Examinations Commission

LEAVING CERTIFICATE 2010

MARKING SCHEME

MATHEMATICS (PROJECT MATHS)

ORDINARY LEVEL
Contents
Page
INTRODUCTION 2
MARKING SCHEME FOR PAPER 1 3
MODEL SOLUTIONS - PAPER 2 43
MARKING SCHEME - PAPER 2, SECTION 0 (QUESTION 1) 59
MARKING SCHEME - PAPER 2, SECTION A AND SECTION B 65
Structure of the marking scheme 65
Summary of mark allocations and scales to be applied 66
Detailed marking notes 67
MARCANNA BREISE AS UCHT FREAGAIRT TRÍ GHAEILGE 75

Introduction

The Ordinary Level Mathematics examination for candidates in the 24 initial schools for Project Maths shared a common Paper 1 and one common question on Paper 2 with the examination for all other candidates. The marking scheme used for these common elements was identical for the two groups.

This document contains the complete marking scheme for both papers for the candidates in the 24 schools.

Readers should note that, as with all marking schemes used in the state examinations, the detail required in any answer is determined by the context and the manner in which the question is asked, and by the number of marks assigned to the question or part. Requirements and mark allocations may vary from year to year.

Marking scheme for Paper 1

GENERAL GUIDELINES FOR EXAMINERS - PAPER 1

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions (-3)
- Slips - numerical errors
- Misreadings (provided task is not oversimplified)

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2, ..etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts - even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5.50$ may be written as $€ 5,50$.

APPLYING THE GUIDELINES

Examples (not exhaustive) of the different types of error:

Blunders (i.e. mathematical errors) (-3)

- Algebraic errors : $8 x+9 x=17 x^{2}$ or $5 p \times 4 p=20 p$ or $(-3)^{2}=6$
- Sign error $-3(-4)=-12$
- Decimal errors
- Fraction error (incorrect fraction, inversion etc); apply once.
- Cross-multiplication error
- Operation chosen is incorrect, (e.g. multiplication instead of division)
- Transposition error, e.g. $-2 x-k+3 \Rightarrow-2 x=3+k$ or $-3 x=6 \Rightarrow x=2$ or
- $4 x=12 \Rightarrow x=8$; each time.
- Distribution error (once per term, unless directed otherwise) e.g. $3(2 x+4)=6 x+4$ or $1 / 2(3-x)=5 \Rightarrow 6-x=5$
- Expanding brackets incorrectly, e.g. $(2 x-3)(x+4)=8 x^{2}-12$
- Omission, if not oversimplified.
- Index error, each time unless directed otherwise
- Factorisation: error in one or both factors of a quadratic: apply once, e.g.
$2 x^{2}-2 x-3=(2 x-1)(x+3)$
- Root errors from candidate's factors: error in one or both roots: apply once.
- Error in formula
- Error(s) in transcribing formulae from tables (assuming it generates mathematical acceptable answer(s)) Serious errors or over simplifications will merit Attempt marks at most (check relevant section of scheme)
- Central sign error in $u v$ or u / v formulae
- Omission of $\div v^{2}$ or division not done in u / v formula (apply once)
- Vice-versa substitution in $u v$ or u / v formulae (apply once)
- Quadratic formula (acceptable) and its application apply a maximum of two blunders

Slips (-1)

- Numerical slips: $4+7=10$ or $3 \times 6=24$, but $5+3=15$ is a blunder.
- An omitted round-off or incorrect round off to a required degree of accuracy, or an early round off, is penalised as a slip each time.
- However an early round-off which has the effect of simplifying the work is at least a blunder
- Omission of units of measurement or giving the incorrect units of measurement in an answer is treated as a slip, once per part (a), (b) and (c) of each question. Only applies where a candidate would otherwise have achieved full marks

Misreadings (-1)

- Writing 2436 for 2346 will not alter the nature of the question so $\mathrm{M}(-1)$

However, writing 5000 for 5026 will simplify the work and is penalised as at least a blunder.
Part (a)
(a)

10 marks
Att 3

$$
\begin{array}{llllll}
1 \mathrm{~km}=1000 \mathrm{~m} & {[3]} & \text { or } & \\
\frac{40}{1000} & {[7]=\frac{2}{50}} & {[9]=\frac{1}{25}} & {[10]} & & 0.04 \quad[7]=\frac{4}{100} \quad[9]=\frac{1}{25} \tag{10}
\end{array}
$$

* Accept correct answer without work for full marks. Accept 1:25
* Accept without work $0.04,4 \%, 25: 1$ or $\frac{25}{1}$ for [7] marks
* Accept without work $\frac{40}{100}, \frac{20}{50}, \frac{4}{10}, \frac{2}{5}$ or 0.4 for [4] marks - these only

Blunders (-3)

B1 Mathematical error e.g. conversion/decimal error
B2 Fraction error
B3 No simplification
Slips (-1)
S1 Simplification not completed to simplest form, between $\frac{40}{1000}$ and $\frac{1}{25}$
Attempts (3 marks)
A1 $\frac{1}{40}$ or $\frac{40}{1}$
A2 Some effort at conversion
A3 Mentions 25 without supporting work
Worthless (0)
W1 Incorrect answer with no work
(i) Calculate the value of

$$
\frac{57 \cdot 6+80 \cdot 44}{1 \cdot 3 \times 10^{4}}
$$

and write your answer correct to three decimal places.
(ii) An importer buys an item for $£ 221$ sterling when the rate of exchange is $€ 1=£ 0.85$ sterling.
He sells it at a profit of 14% of the cost price.
Calculate, in euro, the price for which he sells the item.
(i)

15 marks

Att 5
$\frac{57 \cdot 6+80 \cdot 44}{1 \cdot 3 \times 10^{4}}=\frac{138 \cdot 04}{13000}=0 \cdot 0106=0 \cdot 011$

$$
\begin{align*}
& 57.6+80.44=138.04 \quad[5] \\
& \text { or } 1.3 \times 10^{4}=13000 \quad[5] \quad \text { Both [9] } \\
& \begin{aligned}
\frac{138 \cdot 04}{13000}[12] & =0 \cdot 0106184154 \\
& =0.011
\end{aligned} \tag{14}
\end{align*}
$$

* Accept correct answer without work for 15 marks $0.01 \ldots .$. . [14 marks] without work
* Accept without work for 12 marks :
57.606, $\quad 94.1756-94.176,618826.8307-618826.831$, These only
[12]
[11] [12]

Blunders (-3)

B1 Mathematical error
Slips (-1)
S1 Incorrect or no rounding off
S2 Numerical slips which are not mathematical errors

Misreading (-1)

M1 Must not make work easier - see guidelines

$$
\begin{aligned}
& \frac{£ 221 \times 1 \cdot 14}{0 \cdot 85}=\frac{251 \cdot 94}{0 \cdot 85}=€ 296 \cdot 40 \\
& {[2]+[2] \quad[5]+[2]}
\end{aligned}
$$

Sterling to Euro exchange$\begin{equation*} £ 221=€ \frac{221}{0 \cdot 85}=€ 260 \tag{5} \end{equation*}$	Percentage	
	14% of $€ 260=€ 36.40$	[4]
	$€ 260+€ 36.4=€ 296.40$	[5]
	$€ 260 \times 1.14=€ 296.40$	[5]
Percentage	Sterling to Euro exchange$£ 251.94$	
$£ 221 \times 0.14=£ 30.94(14 \%$ of £221) [4]		
$£ 221+£ 30.94=£ 251.94 \quad[5]$	$0 \cdot 85$	
$£ 221 \times 1.14=£ 251.94 \quad[5]$		

* Accept correct answer without work for full marks [5] + [5]
* No penalty if $€$ not included

Blunders (-3)

B1 Error in finding percentage e.g. decimal or inversion
B2 Error in currency conversion e.g. incorrect operation
Slips (-1)
S1 Fails to add percentage profit

Attempts (2 marks)

A1 Any relevant step, may get both

Worthless (0)

W1 Incorrect answer without work
(i) What sum of money invested at 5% per annum compound interest will amount to $€ 8682$ in 3 years?
Give your answer correct to the nearest euro.
(ii) A sum of $€ P$ was invested at $r \%$ per annum compound interest.

The interest for the first year was $€ 220$
The interest for the second year was $€ 228 \cdot 80$
Calculate r and P.
(c) (i)

10 marks
Att 3
I
$F=P(1+i)^{t} \Rightarrow 8682=P(1.05)^{3} \Rightarrow \frac{8682}{1.157625}=7499.83 \Rightarrow P=€ 7500$
[4] [7] [9] [10]
II
$P=\frac{F}{(1+i)^{n}}=\frac{8682}{(1+0.05)^{3}} \quad[4]=\frac{8682}{1.157625} \quad[7] \quad=7499.83=€ 7500$
III
$€ 8682$ at end year 3
P year $3=\frac{8682}{1.05}=8268.57$
P year $2=\frac{8268.57}{1.05}=7874.83$
P year $1=\frac{7874.83}{1.05}=7499.83=€ 7500$
IV
P year $1=100 \% ; \quad P$ year $2=105 \% ; \quad P$ year $3=110.25 \% ; \quad P$ year $4=115.7625 \%$
$115.7625 \%=€ 8682$ [7]
$100 \%=\frac{8682}{1.157625} \times 100=7499.83=€ 7500$

* Candidates may offer other correct versions
* Formulae and Tables, page 30, use F for A and i for $\frac{\mathrm{r}}{100}$

Blunders (-3)

B1 Mathematical error e.g. percentages or index Note $8682(1.05)^{3}=10050.50=10051$ [7]
B2 Incorrect number of years
B3 Fails to finish method IV
Slips (-1)
S1 Incorrect or no rounding off

Attempts (3 marks)

A1 No compounding of interest - offers $€ 8682-15 \%$ ($€ 7380$) Work must be shown
A2 Answer found by trial and error
A3 5% or 15% of 8682 or mentions 1.05 or 1.15
A4 7499.83 or 7500 without work

Worthless (0)

W1 Incorrect answer without work

Finding r
I

$$
F=P(1+i)^{t} \quad \Rightarrow 220(1+i)=228.80 \quad \Rightarrow(1+i)=1.04 \quad \Rightarrow r=4
$$

II

$$
\text { Interest on } € 220=228.80-€ 220=€ 8.80
$$

$$
\frac{8.80}{220} \times 100=4
$$

Finding P

$$
\begin{aligned}
& P(0 \cdot 04)=220 \Rightarrow P=5500 \\
& 4 \%=220 \\
& 1 \%=55 \\
& 100 \%=5500
\end{aligned}
$$

* Candidates may offer other correct versions
* Formulae and Tables, page 30, use F for A and i for $\frac{r}{100}$

Blunders (-3)
B1 Mathematical error
B2 Error in finding \% from 1.04 , method I
Attempts (2 marks)
A1 Finds $€ 8.80$
A2 Finds by "trial and error" or $r=4 \%$ verified
A3 Correct answer without work
Worthless (0)
W1 Incorrect answer without work
Note
Award 5 marks for fully correct with work
Award 2 marks for some relevant work
Otherwise $\mathbf{0}$ marks

QUESTION 2

Part (a)

(a)

15 marks
Att 5

$$
\begin{align*}
& 2(3+4 x) \leq 22 \Rightarrow 6+8 x \leq 22 \text { [9] or } 2(3+4 x) \leq 22 \text { or } 3+4 x \leq 11 \text { [9] } \\
& \Rightarrow 8 x \leq 16 \Rightarrow x \leq 2 \quad \text { [12] } \tag{12}\\
& 4 x \leq 11-3 \Rightarrow x \leq 2 \\
& x \in\{1,2\}
\end{align*}
$$

* Correct answer without work, full marks
* No penalty for including 0
* Accept marked correctly on a number-line

Blunders (-3)

B1 Mathematical error e.g. distribution error, transposing - once if consistent
B2 x not a natural number, e.g $x \leq-1 / 1 / 2$ gives negative value
B3 Only identifies one element of the solution set, 1 or 2
B4 Verifies one correct value in the inequality, 1 or 2
B5 Stops at $x \leq 2, x=2$ or $x<2$

Attempts (5 marks)

A1 Any correct relevant multiplication or division
A2 Tests a non solution in the inequality e.g 3
A3 0 on its own verified or not

Solve for x and y

$$
\begin{gathered}
2 x-y=1 \\
x^{2}-x y=-6 .
\end{gathered}
$$

(b)
$25(10,5,5,5)$ marks
Att (3, 2, 2, 2)

$$
\begin{array}{llll}
2 x-y=1 \Rightarrow y=2 x-1 & \text { Step 1 } & \text { Isolates } x \text { or } y & {[10]} \\
\hline x^{2}-x y=-6 & \text { Step 2 } & \begin{array}{l}
\text { Forms quadratic equation } \\
\Rightarrow x^{2}-x(2 x-1)=-6
\end{array} & \\
\text { (Penalise error in simplification at Step 3) }
\end{array}
$$

* Error(s) in simplification of quadratic equation apply at the Step 3
* If equation at Step 2 becomes linear award at most Att $2+$ Att 2 for Steps 3 and 4
* Apply similar scheme if candidate isolates x at Step 1
* Random value(s) of x award attempt marks at most (Step 4) if no work of merit in previous steps

Blunders (-3)

B1 Mathematical error - apply at relevant step - see note
B2 Incorrect factors - Step 3
B3 Incorrect roots from factor - Step 3
B4 Only finds one value of x-Step 3 Note B5 will also apply at Step 4
B5 Only finds one value of y

Attempts (3 or 2 marks)

A1 Some relevant work
Note: Don't award multiple Attempts to the same piece of work
(i) Show, by division, that $3 x+1$ is a factor of $3 x^{3}+4 x^{2}-89 x-30$.
(ii) Hence, or otherwise, solve the equation $3 x^{3}+4 x^{2}-89 x-30=0$.
(c) (i)

5 marks
Att2

$$
\begin{array}{r}
3 x + 1 \longdiv { x ^ { 2 } + x - 3 0 } \\
\frac{3 x^{3}+4 x^{2}-89 x-30}{3 x^{2}-89 x} \\
\frac{3 x^{2}+x}{-90 x-30} \\
\frac{-90 x-30}{0} 0
\end{array}
$$

Blunders (-3)

B1 Each error in division
B2 Shows clearly $f(-1 / 3)=0$

Attempts (2 marks)

A1 Some correct division and stops
A2 Substitutes $-1 / 3$ into expression or mentions $f(-1 / 3)$
A3 Sets up division correctly

$$
\begin{aligned}
& 3 x^{3}+4 x^{2}-89 x-30=0 \\
& \Rightarrow(3 x+1)\left(x^{2}+x-30\right)=0 \\
& \Rightarrow(3 x+1)(x-5)(x+6)=0 \\
& \Rightarrow x=-1 / 3, x=5, x=-6
\end{aligned}
$$

* Accept candidates answer from part (i) provided it does not over simplify question
* Accept $f(5)$ and $f(-6)$ fully verified for 4 marks

Blunders (-3)

B1 Incorrect factors of quadratic
B2 Incorrect or missing roots from factors, but see S1
Slips (-1)
S1 Omits $x=-1 / 3$ as a root, if left out [4] at most

Attempts (2 marks)

A1 States $x=-1 / 3$ is a root and stops in part (ii)
A2 Attempt at factorising quadratic from (i)
A3 Some correct use of " $-b$ " formula [Note: Stating formula does not merit attempt mark]
A4 Correct answers without relevant work
A5 Sets up using answer from (i)
A6 Finds $f(k), k \neq 5, \quad k \neq-6$
Worthless (0 marks)
W1 Attempts at factorising $3 x^{3}+4 x^{2}-89 x-30=0$ such as $x^{2}(3 x+4)=89 x+30$
W2 Differentiation

QUESTION 3

Part (a)	$\mathbf{1 5}(\mathbf{1 0 , 5)}$ marks	Att (3, 2)
Part (b)	$\mathbf{2 0}(\mathbf{1 0 , 1 0)}$ marks	Att (3, 3)
Part (c)	$\mathbf{1 5 (1 0 , 5) \text { marks }}$	Att (3, 2)
	$\mathbf{1 5}(\mathbf{1 0 , 5)}$ marks	Att (3, 2)
Part (a)	Given that $3(b+a)=t(6-a)$, calculate the value of a when $t=3$ and $b=-4$.	

(a)	$15(10,5)$ marks	Att 3, 2
I		
II	$\begin{array}{ll} 3 b+3 a=6 t-a t \\ 3 a+a t=6 t-3 b \\ a(3+t)=6 t-3 b & \text { substitution mer } \\ a=\frac{6 t-3 b}{3+t}=\frac{6 \times 3-3 \times-4}{3+3}=\frac{18+12}{6}=5 & \text { rest of work [5] } \end{array}$	

* Accept correct answer without work.
* Once a candidate has substituted correctly for t and b he/she is entitled to [10] marks

Blunders (-3)

B1 Mathematical error e.g transposition, distribution, from 5 marks
B2 Substitution error
B3 Substitutes one value only
B4 Interchanges t and b

Attempts (2 marks)

A1 Some correct effort at isolating /evaluating a, from 5 marks

Worthless (0)

W1 Incorrect answer without work

Solve for x

$$
5(x+1)^{2}=2(x+1)+5
$$

Give your answer correct to two decimal places.
(b)
$20(10,10)$ marks
Att (3, 3)
Step 1, forming quadratic equation: 10 marks
Step 2, solving quadratic equation: 10 marks
I

$$
\begin{align*}
& 5(x+1)^{2}=2(x+1)+5 \\
& \text { Let } y=x+1 \\
& 5 y^{2}=2 y+5 \Rightarrow 5 y^{2}-2 y=5 \quad[10] \\
& 5 y^{2}-2 y-5=0 \\
& \Rightarrow y=\frac{2 \pm \sqrt{4-4(5)(-5)}}{2(5)}[4]=\frac{2 \pm \sqrt{104}}{10}=\frac{2 \pm 10.198}{10}[7]=\frac{12.198}{10} \text { or } \frac{-8.198}{10} \\
& \Rightarrow y=1.2198 \text { or } y=-0.8198 \tag{9}\\
& \Rightarrow x=0.22 \text { or } x=-1.82
\end{align*}
$$

II
$5(x+1)^{2}=2(x+1)+5$
$\Rightarrow 5 x^{2}+10 x+5=2 x+7$
$\Rightarrow 5 x^{2}+8 x=2 \quad[10]$
$5 x^{2}+8 x-2=0$
$\Rightarrow x=\frac{-8 \pm \sqrt{64-4(5)(-2)}}{2(5)}[4]=\frac{-8 \pm \sqrt{104}}{10}=\frac{-8 \pm 10.198}{10}[7]=\frac{2.198}{10}$ or $\frac{-18.198}{10}$
$\Rightarrow x=0.22 \quad$ or $\quad x=-1.82$
[10]

* Accept candidate's quadratic equation for second 10 marks if not factorisable
* If quadratic equation reduced to a linear attempt marks at most in Step 2

Blunders (-3)

B1 Mathematical error each time
B2 Error in use of quadratic formula to a maximum of 2 (Step 2)
Slips (-1)
S1 Fails to round off or rounds off incorrectly - once only
S2 Early rounding off that affects answer
S3 Fails to find x from y in method \mathbf{I}

Attempts (3 marks)

A1 Some effort at multipling out equation - Step 1 Method 11
A2 If equation becomes linear, maximum possible mark from Step 2 is Attempt
A3 Solves a factorisable quadratic equation even if they use formula
A4 Attempts to factorise the quadratic
(i) $2+\sqrt{3}$ is a root of the equation $x^{2}-4 x+c=0$, where c is a real number. Find the value of c and write down the other root.
(ii) The equation $x^{2}+10 x+k=0$ has equal roots.

Find the value of the real number k and write down the value of each root.
(i)

10 marks
Att 3

$$
\begin{align*}
& x^{2}-4 x+c=0 \\
& \Rightarrow(2+\sqrt{3})^{2}-4(2+\sqrt{3})+c=0 \tag{4}\\
& \Rightarrow 4+4 \sqrt{3}+3-8-4 \sqrt{3}+c=0 \\
& \Rightarrow c=1 \tag{7}\\
& \text { Other root: } \quad 2-\sqrt{3} \tag{10}
\end{align*}
$$

* Accept any valid method

Blunders (-3)

B1 Mathematical error
B2 Using decimals $c \neq 1$
Attempts (3 marks)
A1 Some correct substitution
A2 Some correct substitution into " $-b$ " formula
A3 States $2^{\text {nd }}$ root is $2-\sqrt{3}$ and stops must be in surd form
A4 $c=1$ without work even if second root found
(ii)

5 marks
Att 2
I
Let root $=p$
$(x-p)(x-p)=0 \Rightarrow x^{2}-2 p x+p^{2} \Rightarrow-2 p=10 \Rightarrow p=-5 \Rightarrow k=(-5)^{2}=25$
II
$b^{2}-4 a c=0 \Rightarrow 100-4(1)(k)=0 \Rightarrow k=25$
$x=-5, \quad$ [5]

* Accept any valid method

Blunders (-3)
B1 Mathematical error
Slips (-1)
S1 Value of root omitted
Attempts (3 marks)
A1 Correct answer for k without work
A2 Roots found without work
A3 Correct answer without work

Note:
$x^{2}+10 x+25 \quad$ [Att 2]
$(x+5)(x+5) \quad$ [Att 2]
$k=25 \quad$ [4]
$x=-5 \quad$ [5]

QUESTION 4

Part (a)

Given that $i^{2}=-1$, simplify $(4+2 i)(3-i)$ and write your answer in the form $x+y i$, where $x, y \in \mathbb{R}$.
(a)

15 marks
Att 5

$$
\left.\begin{array}{r}
(4+2 i)(3-i)=4(3-i)+2 i(3-i)=12-4 i+6 i-2 i^{2}=12+2 i+2=14+2 i \\
{[9]}
\end{array}\right][12] \quad[14] \quad[15]
$$

Blunders (-3)
B1 Mathematical error
B2 Error in multiplication - maximum of 2 blunders
B3 $i^{2} \neq-1$, mis-use of i^{2} or avoids use of $i^{2} \quad$ B1 and B2 can apply
B4 Mixes up real and imaginary terms
Slips (-1)
S1 Numerical slips
Attempts (5 marks)
A1 Any correct relevant multiplication
Worthless (0)
W1 Incorrect answer without work

Let $u=4+3 i$ and $w=6-8 i$
(i) Find the value of the real number k such that $|u|=k|w|$.
(ii) Express $\frac{w}{u}$ in the form $x+y i$.
(b) (i)

10 marks
Att 3

$$
\begin{aligned}
& |u|=k|w| \\
& \Rightarrow|4+3 i|=k|6-8 i| \\
& \Rightarrow \sqrt{16+9}=k \sqrt{36+64} \\
& \Rightarrow \sqrt{25}=k \sqrt{100} \\
& \Rightarrow k=\frac{1}{2} \quad \text { accept } k=\frac{5}{10}=\frac{\sqrt{25}}{\sqrt{100}}
\end{aligned}
$$

Note modulus: One correct $\sqrt{25}$ or $\sqrt{100}$

$$
\begin{equation*}
\text { Two correct } \sqrt{25} \text { and } \sqrt{100} \tag{7}
\end{equation*}
$$

* No penalty for using 8 for -8 in formula
* Accept distance from $(4,3)$ to $(0,0)$ or $(6,-8)$ to $(0,0)$

Blunders (-3)

B1 Incorrect formula e.g. $\sqrt{ }$ omitted
B2 Incorrect substitution e.g. has $(3 i)^{2}$ and /or $(8 i)^{2}$ in $\sqrt{a^{2}+b^{2}}$ - once only
B3 Mathematical error

Attempts (3 marks)

A1 Incorrect formula with some correct substitution
A2 Plots u and/or w
A3 Correct answer without work
A4 Correct modulus formula and stops
A5 Correct substitution for u and/or v
Worthless (0)
W1 Incorrect answer without work
$\frac{w}{u}=\frac{6-8 i}{4+3 i}=\frac{6-8 i}{4+3 i} \times \frac{4-3 i}{4-3 i}$
$=\frac{24-18 i-32 i+24 i^{2}}{16+9}$
$=\frac{0-50 i}{25}$
$=0-2 i \quad$ or $=0-\frac{50 i}{25}$
Note: 0 required in answer

* Can use multiple of conjugate i.e. $n(4-3 i), n$ a real number, $n \neq 0$
* Calculates numerator or denominator, merits 4 marks
* Calculates numerator and denominator, merits 7 marks

Blunders (-3)
B1 $\quad i^{2} \neq-1$ or misuse of i^{2}
B2 Mathematical error in multiplying out numerator - maximum 1 blunder
B3 Mathematical error in multiplying out denominator - maximum 1 blunder
B4 Error in formation of $\frac{w}{u}$ at final stage e.g. may multiply numerator and denominator

Attempts (3 marks)

A1 Substitutes for u and/or w and stops
A2 Finds conjugate of u and stops
A3 Any correct relevant multiplication

Let $z=a+b i$, where $a, b \in \mathbb{R}$.
Find the value of a and the value of b for which

$$
3 z-10 i=(2-3 i) z
$$

(c)
$15(5,5,5)$ marks
Att (2, 2, 2)

I	$\begin{aligned} & 3 z-10 i=(2-3 i) z \\ & \Rightarrow 3(a+b i)-10 i=(2-3 i)(a+b i) \end{aligned}$	[5]
	$\begin{aligned} & \Rightarrow 3 a+3 b i-10 i=2 a+2 b i-3 a i-3 b i^{2} \\ & \Rightarrow 3 a+3 b i-10 i=2 a+2 b i-3 a i+3 b \end{aligned}$	[5]
	Real parts: $\quad 3 a=2 a+3 b \Rightarrow a=3 b$ Imaginary parts: $3 b-10=2 b-3 a \Rightarrow 3 a+b=10$ $\begin{aligned} 3 a+b=10 \Rightarrow 10 b=10 & \Rightarrow b=1 \\ & \Rightarrow a=3 \end{aligned}$	[5]
II	$\begin{aligned} & 3 z-10 i=(2-3 i) z \\ & \Rightarrow z=10 i-3 z i \\ & \Rightarrow a+b i-10 i=-3 i(a+b i) \end{aligned}$	[5]
	$\begin{aligned} & \Rightarrow a+b i=10 i-3 a i-3 b i^{2} \\ & \Rightarrow a+b i=10 i-3 a i+3 b \end{aligned}$	[5]
	Real parts: $\quad 3 a=2 a+3 b \Rightarrow a=3 b$ Imaginary parts: $3 b-10=2 b-3 a \Rightarrow 3 a+b=10$ $\begin{aligned} 3 a+b=10 \Rightarrow 10 b=10 & \Rightarrow b=1 \\ & \Rightarrow a=3 \end{aligned}$	[5]
III	$\begin{aligned} & 3 z-10 i=(2-3 i) z \\ & \Rightarrow z=10 i-3 z i \quad \Rightarrow z+3 z i=10 i \quad \Rightarrow z(1+3 i)=10 i \end{aligned}$	[5]
	$\Rightarrow z=\frac{10 i}{1+3 i}$	[5]
	$\begin{aligned} & \Rightarrow z=3+i=a+b i \\ & \Rightarrow a=3 \text { and } b=1 \end{aligned}$	[5]

Blunders (-3)

B1 Mathematical error - once per step
Attempts (2 marks)
A1 Any relevant work for a given step

* Do not penalise notation

The first term of a geometric sequence is 4 and the common ratio is $0 \cdot 5$.
Write down the first five terms of the sequence.

(a)

10 marks
Att 3
I

$$
\begin{aligned}
& T_{1}=a=4, \\
& T_{2}=a r=4 \times 0.5=2 \\
& T_{3}=a r^{2}=4 \times 0.5^{2}=1 \text { or }[2 \times 0.5] \\
& T_{4}=a r^{3}=4 \times 0.5^{3}=0.5 \text { or }[1 \times 0.5] \\
& T_{5}=a r^{4}=4 \times 0.5^{4}=0.25 \text { or }[0.5 \times 0.5]
\end{aligned}
$$

II
List 4, 2, 1, $0.5,0.25$

* Accept correct answers with no work
* Accept in fractional form

Blunders (-3)

B1 Decimal error - once if consistent e.g. 0.5 taken as 5 or $r=2$
B2 Indices error - each time
B3 Error in formula - see guidelines

Misreading (-1)

M1 r taken as 0.05

Attempts (3 marks)

A1 Identifies a as 4 and/or r as 0.5 and stops
A2 States $T_{1}=4$
Worthless (0)
W1 Treats as an arithmetic sequence but see A1 and A2
W2 Incorrect answer(s) without work
Note: Answers without work
1 term correct 3 marks
2 terms correct 4 marks
3 terms correct 4 marks
4 terms correct 7 marks
5 terms correct 10 marks

In an arithmetic series, the first term is 6 and the fifth term is 22 .
(i) Find d, the common difference.
(ii) Find T_{14}, the fourteenth term.
(iii) Find S_{20}, the sum of the first twenty terms.

* Answers to parts of questions must be clearly identified
(i)

10 marks
Att 3
I

T_{1}	$=a=6$	$[3]$
T_{5}	$=a+4 d=22$	$[4]$
	$\Rightarrow 4 d=22-6$	$[7]$
	$\Rightarrow d=4$	$[10]$

II
$6,10,14,18,22$
[7]

* Accept correct answer without work
* Acceptable formula - see guidelines

Blunders (-3)

B1 Mathematical error
Slips (-1)
S1 Numerical slips
Attempts (3 marks)
A1 Correct relevant work
A2 $22-4=16$ and stops or $d=16$
(ii)

I
$T_{14}=a+13 d=6+13(4)=6+52=58$
II
List: $6+10+14+18+22+26+30+34+38+42+46+50+54+58$
(Assume final term is answer, otherwise must indicate term 14)

* Accept candidates d from (i)
* Accept correct answer without work

Blunders (-3)

B1 Mathematical error
B2 Incorrect term from list
B3 Finds S_{14} by formula
Slips (-1)
S1 Numerical slips
Attempts (2 marks)
A1 Identifies a as 6 for this part of question
Worthless (0)
W1 Treats as a geometric series but may have identified a as 6 as part of this question

I

$$
S_{20}=\frac{20}{2}(2 a+19 d)=10(12+76)=10(88)=880
$$

II
List: $6+10+14+18+22+26+30+34+38+42+46+50+54+58+62+66+70+74+78+82=880$

* Accept candidate's answers from (i) and (ii)

Blunders (-3)
B1 Finds T_{20} and stops
B2 Writes complete list but fails to sum
B3 Finds S_{14} from (ii)
B4 Incorrect number of terms in list
Slips (-1)
S1 Numerical slips
Attempts (2 marks)
A1 Identifies a and/or d
A2 Correct answer without work.
Worthless (0)
W1 Treats as a geometric series but identification of a will merit A1

In a geometric series, the fourth term is 9 and the seventh term is 243 .
(i) Find r, the common ratio.
(ii) Find a, the first term.
(iii) Find S_{8}, the sum of the first eight terms.
(c) (i)

I $\quad T_{4}=a r^{3}=9$
$T_{7}=a r^{6}=243$

II

$$
\begin{gather*}
\text { List }[1 / 3,1,3,] \quad \mathbf{9}, \mathbf{2 7}, \mathbf{8 1}, \mathbf{2 4 3} \\
\Rightarrow r=3 \tag{10}
\end{gather*}
$$

Blunders (-3)

B1 Mathematical error
B2 Error in use of formula

Attempts (3 marks)

A1 $\quad T_{4}$ or T_{7} expressed in algebraic form and stops
A2 Finds $243 / 9=27$ and stops
A3 Correct answer without work
A4 Partial list
(c) (ii) 5 marks
I

$$
a r^{3}=9 \Rightarrow a\left(3^{3}\right)=9 \Rightarrow 27 a=9 \Rightarrow a=\frac{1}{3} \quad \frac{1}{3}, 1,3,9 \Rightarrow a=\frac{1}{3}
$$

[2] [5]
[2]
[5]

* Accept candidate's r from (i) as long as it does not oversimplify work

Blunders (-3)

B1 Mathematical error
Attempts (2 marks)
A1 Any relevant step
A2 Correct answer without work but allow if full list given in (i)

I

$$
S_{8}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{1 / 3(6561-1)}{3-1}=\frac{1 / 3(6560)}{2}=\frac{3280}{3}=1093 \frac{1}{3}
$$

II

List: $\quad 1 / 3+1+3+9+27+81+243+729=1093.3333$
[2] [5]

* Accept candidate's a and r from (i) and (ii) provided they do not over simplify work

Blunders (-3)

B1 Mathematical error
B2 Fails to sum list in method II
B3 Missing or extra terms in list method
Slips (-1)
S1 Numerical slips
Attempts (2 marks)
A1 Finds T_{8}
A2 Identifies a as $1 / 3$ in this part
A3 Correct answer without work
Worthless (0)
W1 Treats as an arithmetic series but identification of a will merit A2

QUESTION 6

Part (a)	10 marks	Att 3
Part (b)	$20(10,10)$ marks	Att (3, 3)
Part (c)	$20(10,10)$ marks	Att (3, 3)
Part (a)	10 marks	Att 3
Let $h(x)=x^{2}+1$, where $x \in \mathbb{R}$. Write down a value of x for which $h(x)=50$.		

Part (a) 10 marks Att 3

$$
h(x)=50 \Rightarrow x^{2}+1=50 \Rightarrow x^{2}=49 \Rightarrow x= \pm 7
$$

[3] [7] [10]

* Accept correct answer without work. Accept $\sqrt{49}$
* Only one value for x is required.

Blunders (-3)

B1 Mathematical errors
B2 Evaluates $h(50)=2501$
Attempts (3 marks)
A1 Unsuccessful trial and error, e.g. $h(5)=25+1$
A2 Any correct relevant step
Worthless (0)
W1 $50\left(x^{2}+1\right)$ whether continues or not
W2 Incorrect answer with no work
W3 Differentiates

Let $g(x)=\frac{1}{x-2}$, where $x \in \mathbb{R}$ and $x \neq 2$.
(i) Copy and complete the following table:

x	0	1	1.5	1.75	2.25	$2 \cdot 5$	3	4
$g(x)$		-1		-4		2		

(ii) Draw the graph of the function g in the domain $0 \leq x \leq 4$.

(b) (i)

10 marks
Att 3

x	0	1	$1 \cdot 5$	$1 \cdot 75$	$2 \cdot 25$	2.5	3	4
$g(x)$	-0.5	-1	-2	-4	4	2	1	0.5

* Values of $g(x)=x-2$ calculated (all/some correct) misreading which oversimplifies, Att 3
* Accept values as fractions; must be \qquad or \qquad
e.g. for $x=1.5$ accept $\frac{1}{-0.5}$ but not $\frac{1}{1.5-2}$

Blunders (-3)

B1 Treats the function as $f(x)=\frac{1}{x}-2$, even if $g(x)=\frac{1}{x-2}$ written.
The relevant values for $f(x)=\frac{1}{x}-2$ are:

$$
(0, \text { undefined }),(1.5,-4 / 3),(2.25,-14 / 9),(3,-5 / 3),(4,-7 / 4)
$$

B2 Treats as $g(x)=\frac{1}{x+2}$ avoids error with - sign
Slips (-1)
S1 Each un-simplified value to a maximum of 3

Attempts (3 marks)

A1 Copies table and stops
A2 Treats $g(x)$ as $x-2$
Note: Answers without work
1 value correct 3 marks
2 values correct 4 marks
3 values correct 4 marks
4 values correct 7 marks
5 values correct 10 marks

* Consider graph as having 3 features LHS/branch, asymptote (actual or implied) and RHS/branch.
* Asymptote $x=2$ need not be drawn; an implied vertical asymptote (or visible gap) will suffice
* Has graph of $x-2$: oversimplified Att 3
* Accept candidate's values from (i) if not over simplified
* Ignore any graph errors outside the given range e.g. graph cutting the horizontal asymptote
* Points plotted and not joined and not showing asymptote - [4] marks
* Only one branch without a vertical asymptote - [4] marks at most

Blunders (-3)

B1 Left and right branches joined
B2 Points joined incorrectly
B3 LHS or RHS branch missing or asymptote missing or not implied
B4 Serious incorrect scaling of axes e.g. equal distance on x-axis for given values
Slips (-1)
S1 Each point clearly incorrectly plotted or each point clearly omitted to a maximum of 3 per side

Attempts (3 marks)

A1 Draws axes and stops
A2 One point correctly plotted
A3 Any mention of asymptotes
A4 Table from (i) does not give rise to two branches
Note: If B1 or B2 applied at (i) graph at (ii) will merit attempt mark at most

Let $f(x)=x-\frac{5}{x}$, where $x \in \mathbb{R}$ and $x \neq 0$.
(i) Find $f^{\prime}(x)$, the derivative of $f(x)$.
(ii) Find the co-ordinates of the two points at which the tangent to the curve $y=f(x)$ is parallel to the line $y=6 x$.
(c) (i)

10 marks
Att 3
I

$$
f(x)=x-\frac{5}{x}=x-5 x^{-1} \Rightarrow f^{\prime}(x)=1+5 x^{-2}=1+\frac{5}{x^{2}}
$$

[4]
[10]
II

$$
\begin{equation*}
f(x)=x-\frac{5}{x}=\frac{x^{2}-5}{x} \tag{4}
\end{equation*}
$$

$u=x^{2}-5 \quad v=x$
$\frac{d u}{d x}=2 x \quad \frac{d v}{d x}=1$
$f^{\prime}(x)=\frac{x(2 x)-\left(x^{2}-5\right)(1)}{x^{2}}$
(Maximum of 2 blunders in differentiation - simplification not necessary, penalise errors in part (ii))

* Candidates may offer other correct versions e.g. may treat $\frac{5}{x}$ as a $\frac{u}{v}$.
* Apply differentiation penalties as per guidelines
* Answer need not be simplified, penalise in (ii) if necessary but see B3
* $f^{\prime}(x)=1-\frac{5}{1}$ or $1-\frac{0}{1}$ merits 4 marks i.e. $\frac{5}{x}$ not treated as a quotient

Blunders (-3)

B1 Differentiation error once per term
B2 Indices error
B3 Simplification error at start of method II

Attempts (3 marks)

A1 Any correct step at simplification and stops

$$
f^{\prime}(x)=6 \Rightarrow 1+\frac{5}{x^{2}}=6 \Rightarrow 5=5 x^{2} \Rightarrow x^{2}=1 \Rightarrow x= \pm 1
$$

[3]
[7]

$$
\begin{array}{ll}
f(1)=1-\frac{5}{1}=1-5=-4 . & \text { Point }(1,-4) \\
f(-1)=-1-\frac{5}{-1}=-1+5=4 . & \text { Point }(-1,4) \tag{10}
\end{array}
$$

* Accept candidates answer from (i) unless it is oversimplified
* Penalise simplification of $f^{\prime}(x)$ errors in this part if necessary

Blunders (-3)
B1 Mathematical errors
B2 $f^{\prime}(x) \neq 6$
B3 Only one solution found for x, B4 will also apply
B4 Only one value of $f(x) / y$ found
Slips (-1)
S1 Numerical slips

Attempts (3 marks)

A1 Mentions slope of $y=6 x$ is 6
A2 Answer from (i) $=6$ and stops
A3 Mentions connection of slope and derivative and stops

Part (a)	15 marks	Att 5
Part (b)	$20(5,15)$ marks	Att 2,5$)$
Part (c)	$15(5,5,5)$ marks	Att $(2,2,2)$

Part (a)

15 marks
Att 5
Differentiate $x^{2}-6 x+1$ with respect to x.
(a)
15 marks
Att 5
$\frac{d y}{d x}=2 x-6$

* Correct answer without work or notation: full marks.
* If done from first principles, ignore errors in procedure - just mark the answer.
* Only one non zero term correct, award 12 marks

Blunders (-3)

B1 Differentiation error once per term

Attempts (5 marks)

A1 A correct step in differentiation from $1^{\text {st }}$ principles
A2 A correct coefficient or a correct index of x in one of the term(s)
A3 Mentions $\frac{d y}{d x}$ or $f^{\prime}(x)$
Worthless (0)
W1 No differentiation
(i) Differentiate $5-3 x$ with respect to x from first principles.
(ii) Given that $y=\left(x^{2}-4\right)(3 x-1)$, find the value of $\frac{d y}{d x}$ when $x=2$.
(b)

5 marks
Att 2

$f(x)=5-3 x$	
I	$f(x+h)$ $=5-3(x+h)$ $=5-3 x-3 h$
II \quad	$f(x+h)-f(x)=5-3 x-3 h-(5-3 x)=-3 h$
III \quad	$\frac{f(x+h)-f(x)}{h}=\frac{-3 h}{h}=-3$
	$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=-3$

$$
\begin{aligned}
& y=5-3 x \\
& \text { I } y+\Delta y=5-3(x+\Delta x) \\
& =5-3 x-3 \Delta x \\
& \text { y }=5-3 x \\
& \text { II } \Delta y=-3 x \\
& \frac{\Delta y}{\Delta x}=-3 \\
& \text { III } \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=-3
\end{aligned}
$$

* Accept use of $(x-h)$

Blunders (-3)

B1 Any error once per step I, II or III
Note: Must have correct LHS and RHS

Attempts (2 marks)

A1 $f(x \pm h)$ on LHS or some substitution of $x \pm h$ for x on RHS, or equivalent; these only
A2 Mentions Δx or Δy or similar
Worthless (0)
W1 Answer - 3 without work; no attempt at first principles

$$
\begin{array}{ll}
y=\left(x^{2}-4\right)(3 x-1) & y=\left(x^{2}-4\right)(3 x-1) \\
u=x^{2}-4 & v=3 x-1
\end{array} \quad y=3 x^{3}-x^{2}-12 x+4
$$

$\frac{d u}{d x}=2 x \quad \frac{d v}{d x}=3$
$\frac{d y}{d x}=(3 x-1)(2 x)+\left(x^{2}-4\right)(3)$

$$
\begin{equation*}
\frac{d y}{d x}=9 x^{2}-2 x-12 \tag{9}
\end{equation*}
$$

At $x=2$

$$
\begin{equation*}
\text { At } x=2 \tag{12}
\end{equation*}
$$

$\frac{d y}{d x}=(6-1)(4)+(4-4)(3)=20$

$$
\begin{equation*}
\frac{d y}{d x}=9(4)-2(2)-12=36-4-12=20 \tag{15}
\end{equation*}
$$

* Uses $\frac{u}{v}$ merits 9 marks at most - allow for $u=\Rightarrow \frac{d u}{d x}=\ldots$. and $v=\Rightarrow \frac{d v}{d x}=\ldots$. better than A5

Blunders (-3)

B1 Differentiation error
B2 Errors in expanding brackets once only unless over simplifies.
B3 Error in substitution, once only
Slips (-1)
S1 Numerical slips

Attempts (5 marks)

A1 u and/or v correctly identified and stops (I)
A2 Any correct differentiation
A3 At least one term multiplied correctly
A4 Uses $3 x^{3}+4$ even if completed correctly
A5 $\frac{d y}{d x}=(2 x)(3)$

Worthless (0)
W1 Substitutes $x=2$ into y and stops
W2 $u v$ formula written and stops

The speed, v, of an object at time t is given by

$$
v=96+40 t-4 t^{2}
$$

where t is in seconds and v is in metres per second.
(i) At what times will the speed of the object be 96 metres per second?
(ii) What will the acceleration of the object be at $t=2.5$ seconds?
(iii) At what value of t will the acceleration become negative?

* Units: Penalise as per guidelines.
* No retrospective marking.
* No penalty for incorrect notation.
* If parts of (c) are unlabelled, and the context doesn't identify which part is which, assume the questions were answered in sequence from (c) (i) to (c) (iii).
(c) (i)
$96=96+40 t-4 t^{2}$
$\Rightarrow 4 t^{2}-40 t=0$
$\Rightarrow t(t-10)=0$
$\Rightarrow t=0, t=10 \mathrm{~s}$
* One or both answers correct without work, Att 2

Blunders (-3)

B1 Equation $\neq 96$
B2 Incorrect factors
B3 Incorrect roots from factors but see S2
Slips (-1)
S1 No units or incorrect units
S2 $t=0$ not included

Attempts (2 marks)

A1 Attempt at factorising
A2 Trial and error on $96+40 t-4 t^{2}$ even if correct
Worthless (0)
W1 Differentiation

$$
\begin{align*}
& a=\frac{d v}{d t}=40-8 t \\
& \text { At } t=2.5 \quad a=40-8(2 \cdot 5)=20 \mathrm{~m} \mathrm{~s}^{-2} \tag{5}
\end{align*}
$$

* Acceleration as second derivative of v i.e correct $d^{2} v / d t^{2}$ merits 4

Blunders (-3)
B1 Differentiation error
Slips (-1)
S1 No units or incorrect units
S2 Substitution error
Attempts (2 marks)
A1 Mentions $d v / d t$ or similar
Worthless (0)
W1 Substitutes $t=2.5$ into v
(c) (iii)

I

$$
\frac{d v}{d t}<0 \Rightarrow 40-8 t<0 \Rightarrow-8 t<-40 \Rightarrow t>5
$$

or
II
"Acceleration negative (deceleration) after velocity reaches it maximum" or similar
$\frac{d v}{d t}=0 \Rightarrow 40-8 t=0 \Rightarrow t=5$
Acceleration negative after $t=5$

* Correct answer without work, Att 2.

Blunders (-3)

B1 Error solving inequality (I) or equation (II)
Slips (-1)
S1 $t \leq 5$

Attempts (2 marks)

A1 Any correct value offered
A2 Has acceleration $d^{2} v / d t^{2}=-8$, therefore acceleration is always negative
Worthless (0)
W1 $t=8$ from $d^{2} v / d t^{2}=-8$
W2 Attempts to solve $96+40 t-4 t^{2}<0$

QUESTION 8

Part (i)
15 marks
Att 5
Part (ii)
Part (iii)
Part (iv)
10 marks
Att 3
10 marks
Att 3
Part (v)
10 marks
Att 3

* Assume answering in order (i)(v) No retrospective marking

Part (i)
15 marks
Att 5
Let $f(x)=x^{3}-3 x+1$, where $x \in \mathbb{R}$.
(i) Find $f(-3), f(-2), f(0), f(2)$ and $f(3)$.
(i)

$$
\begin{align*}
& f(x)=x^{3}-3 x+1 \\
& f(-3)=(-3)^{3}-3(-3)+1=-27+9+1=-17 \tag{5}\\
& f(-2)=(-2)^{3}-3(-2)+1=-8+6+1=-1 \tag{6}\\
& f(0)=(0)^{3}-3(0)+1=0+0+1=1 \tag{9}\\
& f(2)=(2)^{3}-3(2)+1=8-6+1=3 \tag{1.2}\\
& f(3)=(3)^{3}-3(3)+1=27-9+1=19 \tag{15}
\end{align*}
$$

* Correct answers without work, full marks.
* Don't penalise extra values e.g $f(1)$ and/or $f(-1)$.

Blunders (-3)
B1 Mathematical errors, each time if different
B2 Use x^{2} for x^{3}
Slips (-1)
S1 Arithmetic slips to maximum of 3

Attempts (5 marks)

A1 Only finds one value and stops
A2 Some correct substitution into $f(x)$
A3 $f^{\prime}(x)$ with some correct substitution

Worthless (0)

W1 All incorrect answers without work
Note: Answers without work
1 point/value correct 5 marks
2 points/values correct 6 marks
3 points/values correct 9 marks
4 points/values correct 12 marks
5 points/values correct 15 marks
(ii)

$$
10 \text { marks }
$$

$$
f^{\prime}(x)=3 x^{2}-3
$$

* Correct answer without work or notation, full marks.
* If done from first principles, ignore errors in procedure - just mark the answer.
* Only one non zero term correct, award 7 marks

Blunders (-3)
B1 Differentiation error once per term.
Attempts (3 marks)
A1 A correct step in differentiation from $1^{\text {st }}$ principles
A2 A correct coefficient or a correct index of x.

Find the co-ordinates of the local maximum point and of the local minimum point of the curve $y=f(x)$.
(iii)

$$
\begin{align*}
& \begin{array}{l}
f^{\prime}(x)
\end{array}=3 x^{2}-3=0 \tag{3}\\
& \quad \Rightarrow x^{2}-1=0 \Rightarrow(x+1)(x-1)=0 \Rightarrow x=-1 \text { or } x=1 . \tag{7}\\
& f(x)=x^{3}-3 x+1 \\
& f(-1)=(-1)^{3}-3(-1)+1=-1+3+1=3 \\
& f(1)=(1)^{3}-3(1)+1=1-3+1=-1 \\
& \text { Local maximum }(-1,3), \quad \text { local minimum }(1,-1) .
\end{align*}
$$

* Accept candidate's $f^{\prime}(x)$ from (ii) but see A1
* Accept implied ' $=0$ ' if subsequent work supports it.
* Accept distinguishing max from min by comparing y-ordinates. Second derivative not required.
* Correct answers without calculus, Att 3 at most. May be from graph.

Blunders (-3)
B1 $f^{\prime}(x) \neq 0$ (but see $2^{\text {nd }}$ asterisk)
B2 Error finding roots
B3 Only finds one root (B4 will also apply)
B4 Error finding $f(x)$ value e.g. fails to find $f(x)$ value or only finds one value or does not use $f(x)$

Slips (-1)
S1 Numerical slips
S2 Does not distinguish between maximum and minimum, or indentifies incorrectly

Attempts (3 marks)

A1 $f^{\prime}(x)$ linear and continues
A2 $f^{\prime \prime}(x)$
Worthless (0)
W1 $\quad f(x)=0$, whether continues or not

Draw the graph of the function f in the domain $-3 \leq x \leq 3$.
(iv)

10 marks
Att 3

* Accept candidate's values of $(x, f(x))$ from previous parts unless oversimplified.
* If candidate recalculates points, apply slips and blunders as per guidelines.
* Seven (7) points required Only uses 5 points from (i) [8]

Blunders (-3)

B1 Scale error, serious
B2 Points not joined or joined incorrectly or joined with a series of straight lines
B3 Axes not in standard form

Slips (-1)
S1 Each point incorrectly plotted or omitted

Attempts (3 marks)

A1 Plots $f^{\prime}(x)$ or graph of a non-cubic function
A2 Answers from part (iii) transferred to this part, carries forward max and min values
A3 Effort at calculation of a point with some substitution e.g. $f(0)$
A4 Scaled and labelled axes and stops

Find the range of values of k for which the equation $x^{3}-3 x+1=k$ has three real solutions (roots).

(v)

5 marks

* Accept answer consistent with candidate's graph if cubic
* Accept any valid solution
* Accept answer clearly indicated on graph
* Accept answer using words rather than symbols and $[3,-1]$ or $[-1,3]$
* Accept $-1<k<3$

Blunders (-3)

B1 Inequalities not as stated

Attempts (2 marks)

A1 One correct end-point identified
A2 Solves $f(x)=0$ or finds one correct value of k
A3 Mentions local maximum or local minimum or max. and min.

Coimisiún na Scrúduithe Stáit State Examinations Commission

LEAVING CERTIFICATE 2010

MARKING SCHEME

MATHEMATICS
(PROJECT MATHS) PAPER 2

ORDINARY LEVEL

Coimisiún na Scrúduithe Stáit

State Examinations Commission

Leaving Certificate Examination 2010

Mathematics (Project Maths)

Paper 2
Ordinary Level

Monday 14 June Morning 9:30-12:00

300 marks

Model Solutions - Paper 2

Note that the model solutions for each question are not intended to be exhaustive - there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.

Answer Question 1 from this section.

Question 1

(50 marks)
(a) A circle is inscribed in a square as shown.

The radius of the circle is 9 cm .
(i) Find the perimeter of the square.

$$
l=9 \times 8=72 \mathrm{~cm} \quad \text { or } \quad l=18 \times 4=72 \mathrm{~cm}
$$

(ii) Calculate the area of the square.

$$
\begin{equation*}
A=(18)^{2}=324 \mathrm{~cm}^{2} \tag{5marks}
\end{equation*}
$$

(b) The diagram shows a sketch of a field $A B C D$ that has one uneven edge. At equal intervals of 5 m along $[B C$], perpendicular measurements are made to the uneven edge, as shown on the sketch.

(i) Use Simpson's rule to estimate the area of the field.

$$
\text { Area } \begin{aligned}
\approx h / 3 & (F+L+2 \Sigma O+4 \Sigma E) \\
& =5 / 3(7.5+9.5+2(5+7)+4(6+8.5+4.5)) \\
& =5 / 3(17+2(12)+4(19)=5 / 3(17+24+76)=5 / 3(117) \\
& =195 \mathrm{~m}^{2} .
\end{aligned}
$$

(ii) The actual area of the field is $200 \mathrm{~m}^{2}$.

Find the percentage error in the estimate.

Percentage error: $\frac{5}{200} \times 100=2.5 \%$.
(c) (i) The diameter of a solid metal sphere is 9 cm .

Find the volume of the sphere in terms of π.

$$
V=4 / 3 \pi r^{3}=4 / 3 \pi(4.5)^{3}
$$

$$
=121.5 \pi \mathrm{~cm}^{3} \quad[10 \text { marks }]
$$

(ii) The sphere is melted down. All of the metal is used to make a solid shape which consists of a cone on top of a cylinder, as shown in the diagram.

The cone and the cylinder both have height 8 cm .
The cylinder and the base of the cone both have radius $r \mathrm{~cm}$.
Calculate r, correct to one decimal place.
$V=1 / 3 \pi r^{2} h+\pi r^{2} h=121.5 \pi$
$\Rightarrow 4 / 3 r^{2}(8)=121.5$
$\Rightarrow r^{2}=\frac{121.5 \times 3}{4 \times 8}=11.39$
$\Rightarrow r=3.37$
$\therefore r \approx 3.4 \mathrm{~cm}$
[10 marks]

Answer all five questions from this section.

Question 2

(25 marks)
(a) A line crosses the x-axis at $x=3$ and the y-axis at $y=2$.

Find the equation of the line.

$$
\text { Slope }=-\frac{2}{3}
$$

OR

Points $(3,0)$ and $(0,2)$
Slope $=\frac{2-0}{0-3}=-\frac{2}{3} \quad[15$ marks $]$

Equation: $\quad y=-\frac{2}{3} x+2$
OR
$y-0=-\frac{2}{3}(x-3)$
$3 y=-2 x+6$
[5 marks]
$2 x+3 y=6$
(b) The equations of two lines l_{1} and l_{2} are:

$$
\begin{array}{ll}
l_{1}: & x+3 y=8 \\
l_{2}: & 6 x-2 y=15 .
\end{array}
$$

Determine whether these lines are perpendicular. Justify your answer clearly.

$$
\begin{aligned}
& \text { Slope } l_{1}=-\frac{1}{3} \quad \text { Slope } l_{2}=3 \\
& m_{1} \times m_{2}=\left(-\frac{1}{3}\right) \times(3)=-1 \quad \Rightarrow l_{1} \perp l_{2}
\end{aligned}
$$

Question 3

(a) A circle has centre $(0,0)$ and passes through the point $(3,4)$.
(i) Find the equation of the circle.

$$
x^{2}+y^{2}=r^{2}
$$

$$
(3)^{2}+(4)^{2}=r^{2}
$$

$$
25=r^{2}
$$

Equation: $x^{2}+y^{2}=25$
(ii) Find the co-ordinates of the two points at which the circle crosses the y-axis.

Let $x=0 \quad \Rightarrow y^{2}=25$

$$
y= \pm 5
$$

Points are $(0,5)$ and $(0,-5)$
(b) A circle has centre $(2,4)$ and touches the y-axis.

Find the equation of the circle.

$$
\text { Radius }=2
$$

Equation:

$$
\begin{aligned}
& (x-2)^{2}+(y-4)^{2}=(2)^{2} \\
& \Rightarrow(x-2)^{2}+(y-4)^{2}=4
\end{aligned}
$$

[10 marks]

(a) Using a calculator, or otherwise, find the mean and standard deviation of the data in the following frequency table.

x	20	30	40	50
f	16	38	26	20

$$
\begin{array}{rll}
\text { Mean }=35 \quad \text { Standard deviation } & =9.848857802 & (\text { using } n) \\
& =9.898474528 & (\text { using } n-1)
\end{array}
$$

(b) Below is a stem-and-leaf plot of the heights of a group of students, in centimetres.

13	3					
13	5	6				
14	0	0	1			
14	6	6	7	8		
15	0	1	2	2	3	3
15	5	5	6	7		

Key: $13 \mid 3$ means 133 cm .
(i) How many students are in the group?

20 students
[10 marks]
(ii) What is the range of heights in the group?

$$
157 \mathrm{~cm}-133 \mathrm{~cm}=24 \mathrm{~cm}
$$

(iii) What percentage of the students are between 145 cm and 154 cm in height?

$$
\frac{10}{20}=50 \%
$$

Question 5

(a) Helen has enough credit to download three songs from the internet. There are seven songs that she wants.
(i) How many different possible selections of three songs can she make?

$$
{ }^{7} C_{3}=35
$$

(ii) If there is one particular song that she definitely wants, how many different selections can she now make?

$$
{ }^{6} C_{2}=15
$$

[5 marks (parts (i) and (ii)]
(b) (i) Two fair coins are tossed. What is the probability of getting two heads?
$\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
(ii) Two fair coins are tossed 1000 times. How often would you expect to get two heads?
$1000 \times \frac{1}{4}=250$ times [5 marks]
(c) Síle hands Pádraig a fair coin and tells him to toss it ten times. She says that if he gets ten heads then she will give him a prize. The first nine tosses are all heads. How likely is it that the last toss will also be a head? Tick the correct answer, and give a reason.

Extremely unlikely
Fairly unlikely
50-50 chance $\quad \nabla$
Fairly likely
Almost certain
Reason:

```
e.g.:
Independent Trials
Fair coin
Not influenced by previous tosses
```


Question 6

The diagram shows a triangle $A B C$ in which $|A B|=6 \mathrm{~cm},|C B|=10 \mathrm{~cm}$, and $|\angle A B C|=50^{\circ}$.

(a) Calculate the area of triangle $A B C$, correct to the nearest cm^{2}.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}(6)(10) \sin 50^{\circ} \\
& =30 \sin 50^{\circ} \\
& =22.98133 \\
& \approx 23 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) Calculate the length of $[A C]$, correct to one decimal place.

$$
\begin{aligned}
|A C|^{2} & =(10)^{2}+(6)^{2}-2(10)(6) \cos 50^{\circ} \\
& =136-120 \cos 50^{\circ} \\
& =58.86548684 \\
\Rightarrow|A C| & =7.67238 \\
& \approx 7.7 \mathrm{~cm}
\end{aligned}
$$

(c) The triangle $A^{\prime} B C^{\prime}$ is the image of triangle $A B C$ under the enlargement with centre B and scale factor 3. Find the area of $A^{\prime} B C^{\prime}$, correct to the nearest cm^{2}.

$$
\text { Image Area }=(3)^{2}[23]=9[23]=207 \mathrm{~cm}^{2}
$$

OR

$$
\begin{aligned}
\left|B A^{\prime}\right|= & 18 \mathrm{~cm},\left|B C^{\prime}\right|=30 \mathrm{~cm}, \\
& \Rightarrow \text { Area }=\frac{1}{2}(18)(30) \sin 50^{\circ} \approx 207 \mathrm{~cm}^{2}
\end{aligned}
$$

Answer Question 7, Question 8, and either Question 9A or Question 9B.

Question 7

Probability and Statistics
(40 marks)
The table below gives motor insurance information for fully licensed, 17 to 20-year-old drivers in Ireland in 2007. All drivers who had their own insurance policy are included.

	Number of drivers	Number of claims	Average cost per claim
Male	9634	977	$€ 6108$
Female	6743	581	$€ 6051$

Questions (a) to (e) below refer to drivers in the table above only.
(a) What is the probability that a randomly selected male driver made a claim during the year? Give your answer correct to three decimal places.

$$
\frac{977}{9634} \approx 0.101
$$

[10 marks]
(b) What is the probability that a randomly selected female driver made a claim during the year? Give your answer correct to three decimal places.

$$
\frac{581}{6743} \approx 0.086 \quad \text { [10 marks] }
$$

(c) What is the expected value of the cost of claims on a male driver's policy?

$$
0.101 \times € 6108=€ 616.91 \quad[5 \text { marks }]
$$

(d) What is the expected value of the cost of claims on a female driver's policy?

$$
0.086 \times € 6051=€ 520.39
$$

(e) The male drivers were paying an average of $€ 1688$ for insurance in 2007 and the female drivers were paying an average of $€ 1024$. Calculate the average surplus for each group, and comment on your answer.
(Note: the surplus is the amount paid for the policy minus the expected cost of claims.)

Male $€ 1688-€ 616.91=€ 1071.09$	Female $€ 1024-€ 520.39=€ 503.61$
Comment:	
e.g. Male drivers are generating a much higher surplus. Insurance companies are making far more money from male drivers.	

(f) A 40-year-old female driver with a full license has a probability of $0 \cdot 07$ of making a claim during the year. The average cost of such claims is $€ 3900$. How much should a company charge such drivers for insurance in order to show a surplus of $€ 175$ per policy?

Expected claims value $=€ 3900 \times 0.07=€ 273$

Charge: $€ 273+€ 175=€ 448$

Question 8

Geometry and Trigonometry

Windows are sometimes in the shape of a pointed arch, like the one shown in the picture.

A person is designing such an arched window. The outline is shown in the diagram below the picture.

The centre for the arc $A B$ is C and the centre for the arc $A C$ is $B .|B D|=2.4$ metres and $|D E|=1.8$ metres.
(a) Show that $|\angle A B C|=60^{\circ}$.

$$
\begin{aligned}
|A B|= & |B C| \quad \text { (Radius of arc } A C) \\
|A C|= & |B C| \quad \text { (Radius of arc } A B) \\
& \Rightarrow A B C \text { is an equilateral triangle } \\
& \therefore|\angle A B C|=60^{\circ}
\end{aligned}
$$

(b) Find the length of the arc $A B$.

Give your answer in metres, correct to three decimal places.

$$
\begin{aligned}
\text { Length } & =\left(\frac{60}{360}\right) \times 2 \pi(1.8) \\
& =\frac{1}{6} \times 11.30973355 \\
& =1.884955 \approx 1.885 \mathrm{~m}
\end{aligned}
$$

(c) Find the length of the perimeter of the window.

Give your answer in metres, correct to two decimal places.

$$
\begin{aligned}
\text { Perimeter } & =2(2.4)+1.8+2(1.885) \\
& =4.8+1.8+3.77 \\
& =10.37 \mathrm{~m}
\end{aligned}
$$

[10 marks]
(d) Find the height of the window.

Give your answer in metres, correct to two decimal places.

$$
\begin{aligned}
& x^{2}+(0.9)^{2}=(1.8)^{2} \\
& x^{2}+0.81=3.24 \\
& x^{2}=2.43 \\
& x=1.5558 \approx 1.56 \mathrm{~m}
\end{aligned}
$$

Height of Window $=1.56+2.4=3.96 \mathrm{~m}$
(e) Make an accurate scaled drawing below of the outline of the window, using the scale 1:30. That is, 1 cm on your diagram should represent 30 cm in reality.

[10 marks]

Students in two schools - one in County Kerry and the other in County Offaly - were arguing about which county had the nicest weather in the summer. They agreed to record the highest temperature at each school on ten randomly selected days during the summer of 2009. The results were as follows:

Temperature		at Kerry school $\left(/{ }^{\circ} \mathrm{C}\right)$	Temperature at Offaly school $\left(/{ }^{\circ} \mathrm{C}\right)$		
$18 \cdot 5$	$17 \cdot 2$	$17 \cdot 8$	$22 \cdot 1$	$18 \cdot 0$	$19 \cdot 1$
$17 \cdot 6$	$17 \cdot 5$	$17 \cdot 2$	$17 \cdot 2$	$18 \cdot 4$	$18 \cdot 6$
$17 \cdot 1$	$16 \cdot 9$	$16 \cdot 9$	$19 \cdot 8$	$19 \cdot 0$	$17 \cdot 6$
$17 \cdot 1$			$17 \cdot 0$		

(a) Construct a back-to-back stem-and-leaf plot of the above data.

(b) State two differences between the two distributions.

Examples

- Kerry temperatures are generally lower
- Greater range of temperatures in Offaly
- Offaly has an outlier
- Temperatures in Kerry are largely in the $17^{\circ} \mathrm{C}$ bracket [5 marks]
(c) Perform a Tukey Quick Test on the data, stating clearly what can be concluded.

$$
\begin{array}{ll}
\text { Lower Tail }=2 & \text { Upper Tail }=5 \\
\text { Tail Count }=7 &
\end{array}
$$

Conclusion: In general, in the summer of 2009, temperatures in Offaly were higher than in Kerry.
(d) The students in Offaly looked also at the amount of sunshine. They recorded the number of hours of sunshine each day in July 2009. The data are summarised in the table below.

Hours of sunshine	≤ 2	≤ 4	≤ 6	≤ 8	≤ 10	≤ 12
Number of days	11	12	20	29	30	31

Draw a cumulative frequency curve to represent this data, using the scale indicated.

[10 marks]
(e) Use your cumulative frequency curve to estimate:
(i) the median number of hours of sunshine
(ii) the number of days with more than 7 hours of sunshine.

```
5.5
```

4
[5 marks]
(f) The mean amount of sunshine per day in Offaly in July generally is $4 \cdot 24$ hours. A day is chosen at random from the days in July 2009, as described in part (d) above. What is the probability that the amount of sunshine on that day was less than the mean?

$$
\text { Probability } \approx \frac{12}{31}
$$

(a) The photograph shows the Dockland building in Hamburg, Germany.

The diagram below is a side view of the building. It is a parallelogram.

The parallelogram is 29 metres high.
The top and bottom edges are 88 metres long.

Photo by NatiSythen. Wikipedia Commons. License: CC-SA

(i) Find the area of this side of the building.

$$
\begin{equation*}
\text { Area }=29 \times 88=2552 \mathrm{~m}^{2} \tag{15marks}
\end{equation*}
$$

(ii) If $|B D|=|A D|$, find $|B C|$.

Let $|B C|=x$
$x^{2}=(29)^{2}+(44)^{2}$
$x^{2}=2777$
$x=\sqrt{2777}$
$|B C|=52.6972485$

$|B C| \approx 52.697 \mathrm{~m}$
[5 marks]
(iii) The lines $B C$ and $A D$ are parallel. Find the distance between these parallel lines.

Let $[B C]=$ base and let $y=$ perpendicular height (distance between $B C$ and $A D$)
$|B C| \times y=2552$
$52.697 \times y=2552$
$y=48.427 \mathrm{~m}$
(b) There is a theorem on your geometry course that can be used to construct the tangent to a circle at a given point on the circle. State this theorem and use it to construct the tangent to the circle shown at the point P.

Theorem:

Each tangent is perpendicular to the radius that goes to the point of contact.

(c) In the diagram, the line l is a tangent to the circle.

Find the values of x, y and z.

$$
\begin{aligned}
& x=90 \\
& y=48 \\
& z=42
\end{aligned}
$$

[10 marks]

Marking scheme - Paper 2, Section 0 (Question 1)

N.B. This page applies only to Question 1.

The scheme for this question is identical to that used for candidates who are not involved in Project Maths.

GENERAL GUIDELINES FOR EXAMINERS

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions
- Slips - numerical errors
- Misreadings (provided task is not oversimplified)

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2, ..etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts - even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5.50$ may be written as $€ 5,50$.

Application of penalties

N.B. This page applies only to Question 1.

Penalties are applied subject to marks already secured.
Blunders - examples of blunders are as follows:

- Algebraic errors: $8 x+9 x=17 x^{2}$ or $5 p \times 4 p=20 p$.
- Sign error: $\quad-3(-4)=-12$ or $(-3)^{2}=-9$.
- Fraction error: Incorrect fraction inversion etc. apply once.
- Cross-multiplication error.
- Error in misplacing the decimal point.
- Transposing error: $-2 x-k+3=0 \Rightarrow-2 x=3+k$ or $-3 x=6 \Rightarrow x=2$.
or $\quad 4 x=12 \Rightarrow x=8$ each type once per section.
- Distributive law errors (once per pair of brackets)

$$
1 / 2(3-x)=6 \Rightarrow 6-2 x=6 \text { or } \quad-(4 x+3)=-4 x+3 \quad \text { or } \quad 3(2 x+4)=6 x+4
$$

- Expanding brackets incorrectly: $(2 x-3)(x+4)=8 x^{2}-12 x$.
- Omission, if work not oversimplified, unless directed otherwise.
- Index error, each time unless directed otherwise.
- Factorisation: error in one or both factors of a quadratic, apply once per section.

$$
2 x^{2}-2 x-3=(2 x-1)(x+3)
$$

- Root errors from candidate's factors, error in one or both roots, apply once
- Incorrect substitution into formulae (where not an obvious slip):

$$
\begin{aligned}
& \text { e.g. } 2 x^{2}+3 x+4=0 \Rightarrow x=\frac{-3 \pm \sqrt{9-4(2)(4)}}{2(3)} \\
& \text { or } \quad \frac{10}{\sin 70}=\frac{9}{\sin 50} .
\end{aligned}
$$

10

- Incorrectly treating co-ordinates as $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ when using co-ordinate geometry formula.
- Errors in formula for example: $\frac{y_{2}+y_{1}}{x_{2}+x_{1}}$ or $A=P\left(1+\frac{n}{100}\right)^{r}$ or $a^{2}=b^{2}+c^{2}+b c \cos A$ or $\sqrt{\left(x_{2}-x_{1}\right)^{2}-\left(y_{2}-y_{1}\right)^{2}}$, except as indicated in scheme.
Note: A correct relevant formula isolated and stops is awarded the attempt mark if the formula is not in the Formulae and Tables booklet.
Slips - examples are as follows:
- Numerical slips such as: $4+7=10$ or $3 \times 6=24$ but $5+3=15$ is a blunder.
- An omitted round-off to a required level of accuracy or an incorrect round-off to the incorrect accuracy or an early round-off that affects accuracy are penalised as a slip once in each section.
- However, an early round-off which has the effect of simplifying the work is at least a blunder.
- The omission of the units of measurement in an answer or giving the incorrect units of measurement is treated as a slip once in each section where the candidate would otherwise have obtained full marks in that section. This applies to Q1 (a) (i), (ii), (b) (i) and (c) (i), (ii) and to Q5 (a), and (c) (i), (ii).

Misreadings

- Examples such as 436 for 346 will not alter the nature of the question and are penalised -1 .
- However, writing 5026 as 5000 would alter the work and is penalised as at least a blunder.

QUESTION 1

Part (a)
$10(5,5)$ marks
Att (2,2)
Part (b)
$20(15,5)$ marks
$\operatorname{Att}(5,2)$
Part (c)
$20(10,10)$ marks
Att (3, 3)

Part (a)
$10(5,5)$ marks
Att (2, 2)

A circle is inscribed in a square as shown.
The radius of the circle is 9 cm .
(i) Find the perimeter of the square.
(ii) Calculate the area of the square.

(a) (i)

5 marks
Att 2
$l=9 \times 8=72 \mathrm{~cm}$ or $l=18 \times 4=72 \mathrm{~cm}$.
(a) (ii)

5 marks
Att 2
$A=18^{2}=324 \mathrm{~cm}^{2}$

* Accept correct answer without work, including an answer written on a diagram.
* Accept in section (ii) an answer consistent with candidate's answer to section (i).

5 marks
Correct answer.
4 marks One slip or misreading.
2 marks Work of some merit, otherwise 0 marks.e.g. 2×9 or 18 or 81 .

Worthless (0 marks)

W1 Any incorrect answer without work- subject to work of some merit.
Note: Exception (i) = 324 ($\mathbf{4}$ marks), (ii) $=72 \mathbf{c m}^{2}$ (5 marks).

Case 1	Case 2
$l=(18)^{2}=324 \mathrm{~cm}(4$ marks $)$.	$l=4 \times 9=36(2$ marks $)$
$A=(18 \times 4)=72 \mathrm{~cm}^{2}(5$ marks $)$.	$A=9 \times 9=81 \mathrm{~cm}^{2}(5$ marks $)$

Case 3	Not Obvious (wrong formula)
Circle $=2 \pi r=18 \pi \mathrm{~cm}(4$ marks $)$	(i) $=2 \pi r=18 \pi \mathrm{~cm}(2$ marks)
Area $=\pi r^{2}=81 \pi \mathrm{~cm}^{2}(5$ marks $)$	(ii) $=$ Area $=\pi r^{2}=81 \pi$ (2 marks)

The diagram shows a sketch of a field $A B C D$ that has one uneven edge. At equal intervals of 5 m along [$B C$], perpendicular measurements are made to the uneven edge, as shown on the sketch.

(i) Use Simpson's rule to estimate the area of the field.
(ii) The actual area of the field is $200 \mathrm{~m}^{2}$.

Find the percentage error in the estimate.
(b) (i) Use of formula Calculations
(b) (ii) \%

10 marks
5 marks
5 marks
(i) Area $\approx h / 3(F+L+2 \Sigma O+4 \Sigma E)$

$$
\begin{aligned}
& =5 / 3(7 \cdot 5+9 \cdot 5+2(5+7)+4(6+8 \cdot 5+4 \cdot 5)) \\
& =5 / 3\left(17+2(12)+4(19)=5 / 3(17+24+76)=5 / 3(117)=195 \mathrm{~m}^{2}\right.
\end{aligned}
$$

[10 marks]
[5 marks]
(ii) Percentage error: $\frac{5}{200} \times 100=2 \cdot 5 \%$

* Allow $h / 3=(\mathrm{F}+\mathrm{L}+\mathrm{TOFE})$ and penalise in calculations if formula not used correctly.
* Accept correct TOFE or TOFE consistent with candidates F and L.
* Accept $2 \cdot 5$ or consistent answer without work. (ii)

Substitution:

10 marks Fully correct substitution
7 marks One blunder in substitution
4 marks Two blunders in substitution
3 marks Some merit in candidates work, otherwise 0 marks.
Treat as separate blunders

- Incorrect ${ }^{h} / 3$ (once).
- Incorrect F and/or L or extra terms with F and/or L (once).
- $\Sigma \mathrm{E}$ or $\Sigma \mathrm{O}$ omitted (once).
- Incorrect TOFE (once), if not consistent with candidates F and L .
e.g. $5 / 3(0+9 \cdot 5+2(6+8 \cdot 5+4 \cdot 5)+4(7 \cdot 5+5+7))$

Calculation

5 marks Correct or consistent answer.
4 marks One slip or misreading.
2 marks Work of some merit, otherwise 0 marks

Section (ii)

5 marks Correct answer
4 marks One slip or misreading.
2 marks Work of some merit, otherwise 0 marks.

NOTE:			
I	II	II	IV
No Substitution Ans: 195 (3marks + 2marks)	Substitution (mark =*) Ans: $195 \mathrm{~m}^{2} /$ consistent (* marks +5 marks)	Substitution (mark =*) Ans: 194/consistent (* marks + 4 marks)	Substitution (mark $=*$) Ans: \#/not consistent (* marks +0 marks)

Part (c)
$20(10,10)$ marks
$\operatorname{Att}(3,3)$

A solid metal sphere has diameter 9 cm .
(i) Find the volume of the sphere in terms of π.

The sphere is melted down. All of the metal is used to make a solid shape which consists of a cone on top of a cylinder, as shown in the diagram.
The cone and the cylinder both have height 8 cm .
The cylinder and the base of the cone both have radius $r \mathrm{~cm}$.
(ii) Calculate r, correct to one decimal place.

(c) (i)

10 marks

(c) (ii) 10 marks
(i) $\quad V=4 / 3 \pi r^{3}=4 / 3 \pi(4 \cdot 5)^{3} \downarrow_{4 \text { marks }}=\frac{243}{2} \pi \mathrm{~cm}^{3}$ or $121 \cdot 5 \pi \mathrm{~cm}^{3}$

$$
V=1 / 3 \pi r^{2} h+\pi r^{2} h \downarrow_{3 \text { marks }}=121 \cdot 5 \pi \downarrow_{4 \text { marks }} \Rightarrow 4 / 3 r^{2}(8)=121 \cdot 5 \downarrow_{4 \text { marks }}
$$

(ii)

$$
\begin{aligned}
& \Rightarrow r=\sqrt{\frac{121 \cdot 5 \times 3}{4 \times 8}}=\sqrt{\frac{364 \cdot 5}{32}}=\sqrt{11.3906} \downarrow_{7_{\text {marks }}}=3.375=3.4 \mathrm{~cm} \\
& \text { or } \quad r^{2}=\frac{121 \cdot 5 \times 3}{4 \times 8}=\frac{364 \cdot 5}{32}=11.3906 \downarrow_{7_{\text {marks }}} \Rightarrow r=3.375=3.4 \mathrm{~cm}
\end{aligned}
$$

Accept an answer in section (ii) consistent with the candidate's answer to section (i).

10 marks Fully correct answer
9 marks One slip or misreading.
7 marks One blunder. e.g. $381 \cdot 7$ or 381.7π with work.
4 marks Two blunders
3 marks Some merit in candidates work, otherwise 0 marks.

Treat as separate blunder.

- Incorrect relevant volume of sphere formula i.e $k\left(\pi r^{3}\right)$ where $k \neq 4 / 3$ and continues.

Attempts (3 marks)
A1 Some merit in work. e.g. equation set up or h substituted into relevant volume formula in (ii).
A2 Correct formula with any correct substitution.
A3 Correct answer without work in each section.
A4 $\pi r^{2} h=121 \cdot 5 \pi$ even if completed.
Worthless (0 marks)
W1 Use of any area formula. e.g. $4 \pi r^{2}$.
W2 Non sphere formula.e.g. $\pi r^{2} h$

Marking scheme - Paper 2, Section A and Section B

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	A	B	C	D
No of categories	2	3	4	5
5 mark scale	0,5	$0,3,5$	$0,3,4,5$	
10 mark scale		$0,8,10$	$0,5,8,10$	
15 mark scale			$0,7,12,15$	$0,7,9,12,15$

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (middle partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving incorrect rounding or omission of units, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk. Thus, for example, scale $10 C^{*}$ indicates that 9 marks may be awarded.

Summary of mark allocations and scales to be applied

Section A

Question 2
(a) slope: 15 D
eqt: 5 C
(b) 5 C

Question 3
(a) (i) 10 C
(ii) 5 C
(b) 10 C

Question 4
(a) 5 C
(b) (i) $10 \mathrm{~B}^{*}$
(ii) $5 \mathrm{C}^{*}$
(iii) 5 C

Question 5
(a) 5 C
(b) (i) 5 B
(ii) 5 B
(c) 10 C

Question 6
(a) $15 \mathrm{C}^{*}$
(b) $5 \mathrm{C}^{*}$
(c) $5 \mathrm{C}^{*}$

Section B

Question 7
(a) $10 \mathrm{C}^{*}$
(b) $10 \mathrm{C}^{*}$
(c) 5 C
(d) 5 C
(e) 5 C
(f) 5 C

Question 8
(a) 10 C
(b) $5 \mathrm{C}^{*}$
(c) $10 \mathrm{C}^{*}$
(d) $5 \mathrm{C}^{*}$
(e) 10 C

Question 9A
(a) $15 \mathrm{C}^{*}$
(b) 5 C
(c) 5 C
(d) 10 C
(e) 5 C
(f) 5 C

Question 9B
(a) (i) $15 C^{*}$ (ii) $5 \mathrm{C}^{*}$
(iii) $5 \mathrm{C}^{*}$
(b) Theorem: 5 A

Construction 5B
(c) 10 C

Detailed marking notes

Section A

Question 2

(a) Slope Scale 15D

High partial credit: \quad Slope $=\frac{2}{3}$ or $-\frac{3}{2}$ or $\frac{2-0}{0-3}$ and fails to finish correctly
Middle partial credit: Slope $=\frac{3}{2}$ or identifies 2 correct points on line
$\begin{array}{ll}\text { Low partial credit: } & \begin{array}{l}\text { Identifies one correct point only } \\ \text { Correct relevant formula }\end{array}\end{array}$
Note: Accept correct answer without work

Equation Scale 5C

High partial credit: Correct substitution into equation of line
Substitutes for x and y instead of x_{1} and y_{1} and finishes correctly
Low partial credit: \quad Some correct substitution into equation of line
Note: Accept correct answer without work
(b) Scale 5C

High partial credit: Both slopes correct but no/incorrect conclusion
Low partial credit: One slope correct
Any correct attempt at finding a slope
Condition given for two lines being perpendicular Effort to find 2 points on either l_{1} or l_{2}

No Credit Simultaneous equations only

Question 3

(a) (i) Scale 10C

High partial credit: Finds correct radius and stops (no equation of circle given)
$(0-3)^{2}+(0-4)^{2}=r^{2}$ and correctly finds r^{2} $(3-0)^{2}+(4-0)^{2}=r^{2}$ and squares incorrectly

Low partial credit: Any correct substitution into circle equation. $x^{2}+y^{2}=r^{2}$ and stops.
Attempts to find distance between $(0,0)$ and $(3,4)$
Note: Accept correct answer without work
(ii) Scale 5C

High partial credit: $\quad y^{2}=25$ and stops
Correct answer from graph
Low partial credit:
$x=0$ and stops
$y=0$ and continues to $x^{2}=25$
Note: Accept correct answer without work
(b) Scale 10C

High partial credit: \quad Radius $=2$ but fails to finish correctly

$$
(x-2)^{2}+(y-4)^{2}=r^{2}
$$

Low partial credit: \quad Correctly identifies point on circle eg. $(0,4)$
Equation of circle with any correct substitution for h, k, x or y

Question 4

(a) Scale 5C

High Partial credit: Correctly calculates one answer only
Low Partial credit: Gives answer as 25 for mean
(b) (i) Scale 10B*

Partial credit:
Gives answer as 26 [Stem values included]

* Gives answer as either 19 or 21 merits 9 marks
(ii) Scale 5C*

High partial credit: Max and min given but fails to subtract
Low partial credit: $\quad 157$ or 133 only given
Lists all entries but doesn't identify max/min
(iii) Scale 5C

High partial credit: Correct fraction but fails to convert into percentage
Low partial credit: 10 students only written down (no fraction/percentage)
Writes answer as $\frac{k}{20}$ where $k \neq 10$

Question 5

(a) Scale 5C

High partial credit: Writes both answers as combinations but not evaluated
Low partial credit: $\quad \begin{aligned} & \text { One correct answer only } \\ & \text { Uses permutations (3 choices only) for (i) and/or (ii) } \\ & \\ & \text { Attempt at listing }\end{aligned}$
(b) (i) Scale 5B

Partial credit: Answer given as $\frac{1}{2}$ or $\frac{1}{3}$
Attempt at Sample Space
(ii) Scale 5B

Partial credit: Describes probability e.g. 'Not very often'; 'Some of the time' Any effort at combining a fraction with 1000

No credit: \quad Answer > 1000
Note: Allow candidate to use an incorrect answer from (b) (i) without further penalty
(c) Scale 10C

High partial credit: Correct answer with no reason given
Low partial credit: Correct reason with no box ticked
No credit: Incorrect box ticked

Question 6

(a) Scale 15C*

High partial credit: Correct answer by accurate measurement
$\frac{1}{2}(6)(10) \sin 50$
Low partial credit: $\quad \frac{1}{2}(6)(10)$
Some correct substitution into $\frac{1}{2} a b \sin C$
Transfers all 3 pieces of given information correctly to diagram
(b) Scale 5C*

High partial credit: \quad Correct work as far as $|A C|^{2}=58.86548684$
Low partial credit: Correct substitution into cosine rule
Answer by accurate measurement in the range [7.6 to 7.8] Treats as a right angled triangle
(c) Scale 5C*

High partial credit: \quad Area $=\frac{1}{2}(18)(30) \sin 50$ but fails to finish correctly Area $=(3)^{2}[23]$ and fails to finish correctly

Low partial credit: Any use of 3 and the answer to (a) Finds $\left|B A^{\prime}\right|$ (18) or $\left|B C^{\prime}\right|$ (30) $k^{2}=3^{2}$

Section B

Question 7

(a) Scale 10C*

High partial credit: $\quad \frac{977}{16377}$ or $\frac{9634}{977}$
Low partial credit: Any use of 977 or 9634

* Note: $\frac{977}{9634}$ merits at least 9 marks

Full Credit for: $0.101 ; 10.1 \% ; 10.141 \%$
(b) Scale 10C*

High partial credit: $\quad \frac{581}{16377}$ or $\frac{6743}{581}$
Low partial credit: Any use of 581 or 6743
*Note: $\frac{581}{6743}$ merits at least 9 marks
Full Credit for: 0.086; 8.6\%; 8.616\%
(c) Scale: 5C

High partial credit: $\quad 6108 \times 0.101$ but fails to finish
Low partial credit: Writes down 6108
Note: Accept correct answer or answer consistent with candidate's answer from (a)
(d) Scale 5C

High partial credit: $\quad 6051 \times 0.086$ but fails to finish
Low partial credit: Writes down 6051
Note: Accept correct answer or answer consistent with candidate's answer from (b)
(e) Scale 5C

High partial credit: $\quad € 10,294,676$ and $€ 3,389,201$ and appropriate comment Correct answers with no/incorrect comment

Low partial credit: Any use of relevant information e.g. 1688 in Male column
(f) Scale 5C

High partial credit: $€ 273$ but fails to finish correctly
Low partial credit: Any use of relevant data e.g. $€ 3900+€ 175$

Question 8

(a) Scale 10C

High partial credit: Writes the reason as 'Isosceles Triangle' Shows 1.8 on all 3 sides of triangle in diagram

Low partial credit: \quad Puts 60° into all 3 angles in diagram but no reference to side length
(b) Scale $5 \mathrm{C}^{*}$

High partial credit: Uses a radius of 0.9 and finishes correctly $\frac{1}{6} \times 2 \pi \times 1.8$ and fails to finish

Low partial credit: \quad Uses $l=r \theta \Rightarrow l=(1.8)(60)$
Writes $\frac{60}{360}$ or $\frac{1}{6}$
(c) Scale 10C*

High partial credit: Uses at least 3 correct sides in addition
Low partial credit: Any relevant addition
(d) Scale 5C*

High partial credit: \quad Correct height of triangle (1.56) but fails to add 2.4
Low partial credit: $\quad \begin{aligned} & \text { 2.4 added to some other number } \\ & \text { Any relevant attempt at getting height of triangle } \\ & \\ & \\ & \text { Measures height from part (e) }\end{aligned}$
(e) Scale 10C

High partial credit: $\quad 3$ sides of rectangle or 2 arcs constructed Correct construction outside agreed tolerance [$\pm 3 \mathrm{~mm}$]

Low partial credit: Any partial construction other than above
Calculates 8 cm and 6 cm

Question 9A

(a) Scale 15C*

High partial credit: Leaves 20 or 21 out of stem Omits 2 or 3 leaves
Low partial credit: Omits more than 3 leaves Any relevant attempt

Note: Accept leaves unordered.

* Fully correct but no key merits 14 marks
* Omits only one leaf merits 14 marks
(b) Scale 5C

High partial credit: One correct difference identified
Low partial credit: Reference to individualised data but not referring to distribution
(c) Scale 5C

High partial credit: $\quad \mathrm{TC}=7$ but incorrect conclusion
Low partial credit: 2 and/or 5 written but not added Identifies tails correctly
Any work of merit
(d) Scale 10C

High partial credit: 2 or less errors
Low partial credit: >2 errors
Errors: Inaccurate scale, joins points with lines, plots point incorrectly
Note: Curve does not need to be joined to $(0,0)$
[Number of days with 0 hours sunshine unknown]
(e) Scale 5C

High partial credit:
One correct answer
Low partial credit: Any work of merit e.g. Fails to subtract from 31, draws line up from 6
Note: \quad Accept answers consistent with candidate's graph with a tolerance of ± 0.3 on horizontal axis and ± 1 on vertical axis.
Accept use of 15.5 or 16 to find median.
(f) Scale 5C

High partial credit: Writes 12, 13 or 14 but no fraction
Writes answer as a percentage [38% to 45%] without work
Low partial credit: \quad Writes $\frac{k}{31}$ where $k \neq 12,13,14$
Descriptive answer within required range e.g. Moderately likely
Any work of merit

Question 9B

(a) (i) Scale 15C*

High partial credit: $\quad \frac{1}{2}(29)(88)$
Low partial credit: Any use of 88 and 29
(ii) Scale 5C*

High partial credit: $\quad x^{2}=277$
Low partial credit: Use of 44
Joins B to D in diagram
(iii) Scale 5C*

High partial credit: Sets up equation correctly: $|B C| \times y=2552$
Low partial credit: Uses answer from (i)
Mentions Base \times Height
(b) Theorem: Scale 5A

Construction: Scale 5B
Partial credit:
Tangent drawn with no radius/diameter Joins centre to P
(c) Scale 10C

High partial credit: 2 correct answers only
Low partial credit: 1 correct answer only
Gives incorrect answers for y and z that sum to 90°
Gives incorrect answers for x and y that sum to 138°

Marcanna breise as ucht freagairt trí Ghaeilge

(Bonus marks for answering through Irish)

Ba chóir marcanna de réir an ghnáthráta a bhronnadh ar iarrthóirí nach ngnóthaíonn níos mó ná 75% d'iomlán na marcanna don pháipéar. Ba chóir freisin an marc bónais sin a shlánú síos.

Déantar an cinneadh agus an ríomhaireacht faoin marc bónais i gcás gach páipéir ar leithligh.
Is é 5% an gnáthráta agus is é 300 iomlán na marcanna don pháipéar. Mar sin, bain úsáid as an ngnáthráta 5% i gcás iarrthóirí a ghnóthaíonn 225 marc nó níos lú, e.g. 198 marc $\times 5 \%=9 \cdot 9 \Rightarrow$ bónas $=9$ marc.

Má ghnóthaíonn an t-iarrthóir níos mó ná 225 marc, ríomhtar an bónas de réir na foirmle [300 - bunmharc] $\times 15 \%$, agus an marc bónais sin a shlánú síos. In ionad an ríomhaireacht sin a dhéanamh, is féidir úsáid a bhaint as an tábla thíos.

Bunmharc	Marc Bónais
226	11
$227-233$	10
$234-240$	9
$241-246$	8
$247-253$	7
$254-260$	6
$261-266$	5
$267-273$	4
$274-280$	3
$281-286$	2
$287-293$	1
$294-300$	0

