

Coimisiún na Scrúduithe Stáit State Examinations Commission

Junior Certificate 2012

Marking Scheme

Project Maths (Phase 2)

Ordinary Level
Contents Page
Introduction 2
Paper 1
Model Solutions 3
Marking Scheme (Questions 1 - 14) 19
Marking Scheme (Question 15) 32
Paper 2
Model Solutions 39
Marking Scheme 58

Introduction

The Ordinary Level Mathematics examination for candidates in the 24 initial schools for ProjectMaths shared a common question on Paper 1 with the examination for all other candidates. The marking scheme used for the common question was identical for the two groups. This document contains the complete marking scheme for both papers for the candidates in the 24 schools.

Readers should note that, as with all marking schemes used in the state examinations, the detail required in any answer is determined by the context and the manner in which the question is asked, and by the number of marks assigned to the question or part. Requirements and mark allocations may vary from year to year.

Question 1

Sheila orders two pizzas to divide evenly between herself and five friends.

(a) What fraction of a pizza will each person get? Write your fraction in its simplest form.

(b) One of the friends gets a text and leaves before the pizza is delivered. What fraction will each person now get if the pizzas are divided evenly between those remaining?

(c) Find how much extra pizza each person gets.

Question 2

(a) Cathy works in a bakery and earns $€ 8.65$ per hour. She works 40 hours a week. Find Cathy's gross pay for the week.

(b) Cathy has to pay income tax at a rate of 20\%. Find Cathy's gross tax.

(c) She has a tax credit of $€ 20$ per week. Find Cathy's net tax.

| | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | €69.20-€20
 $=€ 49 \cdot 20$ |

(d) How much per week is she left with?

(e) Cathy had $€ 1650$ saved in the credit union at the beginning of a year. The credit union paid $4 \cdot 5 \%$ interest on her money. Find the interest earned in that year.

				$\begin{aligned} & € 1650 \times \cdot 045 \\ & =€ 74 \cdot 25 \end{aligned}$																			

(f) Cathy wants to use this interest to pay an electricity bill. Electricity costs 20 cent per unit. She used 250 units. The bill also has a standing charge of $€ 30$. Calculate the electricity bill.

					$\begin{aligned} & 250 \times 0 \cdot 20=€ 50 \\ & € 50+€ 30=€ 80 \end{aligned}$																	

(g) Does Cathy have enough money from the interest to pay the electricity bill? Explain your answer.

Question 3

The table below shows the values when 2 is raised to certain powers.
(a) Complete the table.

Power of 2	Expanded power of 2	Answer
2^{1}	2	2
2^{2}	2×2	4
2^{3}	$2 \times 2 \times 2$	8
2^{4}	$2 \times 2 \times 2 \times 2$	16
2^{5}	$2 \times 2 \times 2 \times 2 \times 2$	32
2^{6}	$2 \times 2 \times 2 \times 2 \times 2 \times 2$	64
2^{7}	$2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$	128
2^{8}	$2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$	256
2^{9}	$2 \times 2 \times 2$	512

Maria wins a prize in a lottery and is given two options.
Option A: $€ 1000$ cash today

$$
€ 1000
$$

or
Option B: Take $€ 2$ today, $€ 4$ tomorrow, $€ 8$ the next day, and doubling every day for 9 days.
$€ 2+€ 4+€ 8+\varrho$
(b) Which option should Maria choose if she wants to get the most prize money. Explain your answer.

Page 6

Question 4

John takes his car to a garage for a service and receives an itemised bill. Find the total cost of servicing the car.

Itemised bill for service	Cost
5 litres of oil at $€ 4 \cdot 20$ per litre	$\mathbf{€ 2 1}$
2 windscreen wiper blades at $€ 4 \cdot 50$ per blade	
Total bill	$\mathbf{€ 9 . 0 0}$
2 bub-total (before VAT added)	$\mathbf{€ 5 6 . 0 0}$

Question 5

Ciaran is wrapping a present in a rectangular box.

(a) How many faces has the rectangular box?

6
(b) Draw a net of the rectangular box here, to a suitable scale.

(c) Indicate on your diagram in (b) one pair of faces that are equal in area.
(d) Find the surface area of the box.

Question 6

The universal set, $U=\{1,2,3,4,5,7,10,11,13,17,19,20\}$.
A is the set of prime numbers between 1 and 20. B is the set of factors of 20 .
(a) List the elements of the set A.

$$
A=\{2,3,5,7,11,13,17,19\}
$$

(b) List the elements of the set B.

$$
s=\{1,2,4,5,10,20\}
$$

(c) Fill in the Venn diagram below placing all elements of U in the correct regions.

(d) List the elements of $A \cap B$.

$$
A \cap B=\{2,5\}
$$

(e) Complete the sentence below.

If an element is in the region $A \cap B$, it has two properties: it is a prime number and it is

```
a factor of 20.
```

(f) The number 16 is added to the universal set. Place 16 in the correct region in the Venn diagram in part (c) and explain why you placed it there.

| | | |
| :--- | :--- | :--- | :--- | :--- |
| Reason: | It is in U but is not prime and is not a factor of 20 | |

Question 7

(a) Write the following numbers correct to the nearest ten.

121
195
504
120
200
$\underline{500}$
(b) Write the following numbers correct to 3 decimal places.

105.5555	2.173	0.0264
$\mathbf{1 0 5 . 5 5 6}$	$\underline{\mathbf{2 . 1 7 3}}$	$\underline{\mathbf{0 . 0 2 6}}$

(c) Write the following numbers correct to two significant figures.

2920	159	0.0336
$\underline{\mathbf{2 9 0 0}}$	$\underline{160}$	$\underline{0.034}$

(d) Karen went to a shop to buy five magazines. She had $€ 10$ to spend. She made an estimate of the total cost by correcting the price of each magazine to the next highest euro. The magazines cost $€ 1 \cdot 95, € 1 \cdot 99, € 3 \cdot 59, € 1 \cdot 40$ and 99 cent. Work out her estimate.

(e) Based on the estimate, would she think she had enough money?

No

(f) Work out the exact cost of the magazines.

(g) Suggest what you think is a better method for estimating the total cost of the magazines. Give a reason for your answer.

Question 8

Kevin has saved $€ 20$. He gets $€ 7$ a week for doing jobs at home.
He spends $€ 2$ on sweets every week and saves the rest in a piggybank.
(a) How much money has he saved at the end of week 1?

(b) Complete the table to show how his savings grow in the first five

weeks.

	Week 1	Week 2	Week 3	Week 4	Week 5
$€ 20$	$€ 25$	$€ 30$	$€ 35$	$€ 40$	$€ 45$

(c) Write down a formula (in words) to represent the amount he has saved at the end of each week.

| | €5(week number) $+€ 20$
 or
 $5 n+20$ | | |
| :--- | :--- | :---: | :---: | :---: | :---: |

(d) Kevin would like to buy a mobile phone costing $€ 100$. Use your formula to find out how many weeks he needs to save, to have enough money to buy the phone.

(e) Kevin stops buying the sweets after 5 weeks. How much can he save each week after that?

(f) Kevin thinks he can buy his phone 3 weeks sooner with the extra savings.

Do you agree with Kevin? Explain your answer.

Question 9

(a) Find the values of the following expressions if $a=4$ and $b=-1$.
(i) $2 a+3 b-2$.

$$
\begin{aligned}
& \left.=\begin{array}{cc}
4 \\
= & 8 \\
= & -3
\end{array}\right)-2 \\
& =3
\end{aligned}
$$

(ii) $a^{2}+b^{2}+4$

$$
\begin{aligned}
& \left(\begin{array}{lll}
4
\end{array}\right)^{2}+\left(\begin{array}{cc}
-1 &)^{2}+4 \\
= & 16 \\
= & 21
\end{array}\right.
\end{aligned}
$$

(iii) $\frac{a+2 b}{2}=$

$$
\frac{4+2(-1)}{2}=\frac{4-2}{2}=\frac{2}{2}=1
$$

(b) Multiply $x+4$ by $x-6$.

Question 10

(a) There are four terms given below. Three of them have a common factor other than 1.
$3 x y$
$6 a y$
$11 a x$
$9 y$
Underline these three terms and write down the highest common factor of the three terms.

$3 y$

(b) Factorise each of the following:
(i) $4 x+8 y-12 z$

$$
=4(x+2 y-3 z)
$$

(ii) $a b-2 a+3 b-6$

$$
\begin{aligned}
& =a(b-2)+3(b-2) \\
& =(a+3)(b-2)
\end{aligned}
$$

(iii) $x^{2}+5 x+6$

(iv) $b^{2}-16$

Question 11

(a) Jane sets Molly a word problem. "If I multiply a number by seven and add four, the result is the same as multiplying the number by three and taking eight." Molly starts by writing $7 x+4=$. Finish Molly's equation and solve it to find the number.

$$
\begin{gathered}
7 x+4=3 x-8 \\
7 x-3 x=-8-4 \\
4 x=-12 \\
x=\frac{-12}{4} \\
x=-3
\end{gathered}
$$

(b) Solve the equation $x^{2}-3 x-10=0$.

Question 12

(a) Solve the inequality.

$$
3 x-5 \geq-2, \quad x \in \mathbf{N}
$$

$$
\begin{array}{rl}
3 & x \\
3 & \geq-2+5 \\
x & \geq 3 \\
x & \geq \frac{3}{3} \\
x & \geq 1
\end{array}
$$

(b) Mark the solution on the number line given below.

(c) John and Gemma played a new computer game called Benga. John scored two bengas minus three penalties. His total score was seven points. He made the equation $2 x-3 y=7$ to represent his score. Gemma scored five bengas minus five penalties for twenty points.
(i) Make an equation to represent Gemma's score.

(ii) Use simultaneous equations to find the number of points for a benga and the number of points for a penalty.

(iii) Verify your solutions in both equations.

Question 13

Melissa bought a horse in 2007 for $€ 500$. She took the horse to the sales each year for three years to have it valued but did not sell. She recorded the values on the graph below.

(a) Use a line to join the points on the graph.
(b) If the pattern continued, what was the horse worth in 2011? $€ 300$
(c) How much does the horse lose in value each year?

(d) Melissa will sell the horse when it reaches a value of $€ 200$. If the pattern continues, in what year will she sell the horse? $\underline{2013}$
(e) James bought a horse for $€ 700$ in 2007. His horse loses value at a constant rate. It was worth $€ 100$ in 2011. Mark these two points on the graph above, and join them with a straight line.
(f) In what year will the two horses have the same value? What is that value?

(g) Louise examines the graph and says "looking at the slopes of the lines, I can tell which horse loses value faster". Explain in your own words what Louise means.

Question 14

Three experiments on temperature are done in the science lab. Pupils record and plot the temperature of each experiment each hour, for 5 hours.

In experiment A , the temperature doubles every hour.
In experiment B , the temperature increases by 2° every hour.
In experiment C , the temperature increases by 3° each hour for three hours and then remains constant. Identify each experiment by its number.

Experiment	Graph number
A	$\mathbf{1}$
B	3
C	2

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	A	B	C	D
No of categories	2	3	4	5
2 mark scale	0,2	$0,1,2$		
5 mark scale	0,5	$0,3,5$	$0,3,4,5$	
10 mark scale	$\mathbf{0 , 1 0}$	$\mathbf{0 , 6 , 1 0}$	$\mathbf{0 , 5 , 8 , 1 0}$	$0,5,7,8,10$
15 mark scale		$\mathbf{0 , 1 0 , 1 5}$	$0,7,13,15$	

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

- A-scales (two categories)
- incorrect response (no credit)
- correct response (full credit)
- B-scales (three categories)
- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)
- C-scales (four categories)
- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving incorrect rounding or omission of units, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk. Thus, for example, scale 10C* indicates that 9 marks may be awarded.

Summary of mark allocations and scales to be applied.

Question 1(5)
(a) $\&(\mathrm{~b}) \&(\mathrm{c}) \quad 5 \mathrm{C}$

Question 2(31)
(a) 5 A
(b) $\quad 5 \mathrm{C}$
(c) $\quad 2 \mathrm{~B}$
(d) $\quad 2 \mathrm{~B}$
(e) 2 B
(f) 10 B
(g) 5B

Question 5(14)
(a) 5 A
(b) $\quad 2 \mathrm{~B}$
(c) $\quad 5 \mathrm{~B}$
(d) 2 B

Question 3(15)
(a) $\&(\mathrm{~b}) \quad 15 \mathrm{C}$

Question 6(24)
(a) 2 B
(b) 5 B
(c) 5 B
(d) $\quad 5 \mathrm{~A}$
(e) 2 B
(f) 5B

Question 9(27)
(a)(i) 5 C
(a)(ii) 5 C
(a)(iii) $\quad 5 \mathrm{C}$
(b) 2B

Question 10(10)
(a)\&(b) 10D

Question 8(24)
(a) 5 A
(b) $\quad 5 \mathrm{C}$
(c) $\quad 2 \mathrm{~B}$
(d) $5 B$
(e) $\quad 5 \mathrm{~A}$
(f) 2 B

Question 11(4)
$\begin{array}{ll}\text { (a) } & 2 \mathrm{~B} \\ \text { (b) } & 2 \mathrm{~B}\end{array}$

Question 14(5)
5C

2A
$\begin{array}{cc}\text { (a) } & 5 \mathrm{~A} \\ \text { (b) } & 5 \mathrm{~A} \\ \text { (c) } & 5 \mathrm{~A} \\ \text { (d) } & 5 \mathrm{~A} \\ \text { (e) } & 5 \mathrm{~B} \\ \text { (f) } & 2 \mathrm{~B}\end{array}$
$\begin{array}{cc}\text { (a) } & 5 \mathrm{~A} \\ \text { (b) } & 5 \mathrm{~A} \\ \text { (c) } & 5 \mathrm{~A} \\ \text { (d) } & 5 \mathrm{~A} \\ \text { (e) } & 5 \mathrm{~B} \\ \text { (f) } & 2 \mathrm{~B}\end{array}$
$\begin{array}{cc}\text { (a) } & 5 \mathrm{~A} \\ \text { (b) } & 5 \mathrm{~A} \\ \text { (c) } & 5 \mathrm{~A} \\ \text { (d) } & 5 \mathrm{~A} \\ \text { (e) } & 5 \mathrm{~B} \\ \text { (f) } & 2 \mathrm{~B}\end{array}$
$\begin{array}{cc}\text { (a) } & 5 \mathrm{~A} \\ \text { (b) } & 5 \mathrm{~A} \\ \text { (c) } & 5 \mathrm{~A} \\ \text { (d) } & 5 \mathrm{~A} \\ \text { (e) } & 5 \mathrm{~B} \\ \text { (f) } & 2 \mathrm{~B}\end{array}$
$\begin{array}{cc}\text { (a) } & 2 \mathrm{~A} \\ \text { (b) } & 5 \mathrm{~A} \\ \text { (c) } & 5 \mathrm{~A} \\ \text { (d) } & 5 \mathrm{~A} \\ \text { (e) } & 5 \mathrm{~B} \\ \text { (f) } & 2 \mathrm{~B}\end{array}$
$\begin{array}{cc}\text { (a) } & 5 \mathrm{~A} \\ \text { (b) } & 5 \mathrm{~A} \\ \text { (c) } & 5 \mathrm{~A} \\ \text { (d) } & 5 \mathrm{~A} \\ \text { (e) } & 5 \mathrm{~B} \\ \text { (f) } & 2 \mathrm{~B}\end{array}$
$\begin{array}{cc}\text { (a) } & 5 \mathrm{~A} \\ \text { (b) } & 5 \mathrm{~A} \\ \text { (c) } & 5 \mathrm{~A} \\ \text { (d) } & 5 \mathrm{~A} \\ \text { (e) } & 5 \mathrm{~B} \\ \text { (f) } & 2 \mathrm{~B}\end{array}$

QUESTION 1

(a) and (b) and (c) Scale 5C

Full Credit: (a) and (b) and (c) correct.
High partial credit: Any 2 from (a)/(b)/(c) correct.
Low partial credit: Any 1 from (a)/(b)/(c) correct.

QUESTION 2

(a) Scale 5C

High partial credit: 40(€8.65).
Low partial credit: Use of $€ 8.65$ or 40 .
(b) Scale 5C

High partial credit: $€ 346(0 \cdot 20)$ or similar.
Low partial credit: Use of candidates answer to part (a) or 20%.
(c) Scale 2B

Partial credit: Any use of candidates answer to part (b) or $€ 20$.
(d) Scale 2B

Partial credit: Use of candidates answers to part (a) or part (c).
(e) Scale 2B

Partial credit: Use of $€ 1650$ or $4 \cdot 5 \%$.
(f) Scale 10B

Partial credit: Use of 250 or 20 or $€ 30$.
(g) Scale 5B

Partial credit: Correct answer or correct reason.
Correct answer but unsound reason. Incorrect answer but gives a valid reason

QUESTION 3

(a) and (b) Scale 15C

Accept 2^{4} expanded as $2 \times 2 \times 2 \times 2$ or $2^{3} \times 2$ or $2^{2} \times 2^{2}$.
Full Credit:
(a) and (b) correct.

Note: (b) Correct option and correct reason.
High partial credit: Correct table.
Low partial credit: 1 correct entry from table.

QUESTION 4

Itemised items
Oil: \quad Scale 2A
Blades: \quad Scale 2A
Brakes: Scale 2A
Labour: Scale 2A

Sub-total: Scale 2A

VAT: Scale 10A

Total bill: Scale 5A

QUESTION 5

(a) Scale 5A
(b) Scale 2B

Partial credit: An effort at drawing a net with at least 4 faces.
An effort to modify box to show hidden faces.
(c) Scale 5B

Partial credit: Indicates any 2 unequal faces on the net.
(d) Scale 2B*
$\begin{array}{ll}\text { Partial credit: } & 300 \text { or } 400 \text { or } 1200 \text {. } \\ & \text { Correct substitution into } \mathrm{L} \times \mathrm{B} . \\ & \text { Volume calculated correctly (12000). } \\ & \text { Perimeter calculated correctly (320). }\end{array}$

QUESTION 6

(a) Scale 2B

Full credit: $\quad 8$ correct elements (no excess).
Partial credit: 2 correct elements.
(b) Scale 5B

Full credit: $\quad 6$ correct elements (no excess).
Partial credit: 2 correct elements.
(c) Scale 5B

Do not penalise candidate for incorrect set notation.
Partial credit: 2 correct entries on Venn diagram.
(d) Scale 5A
(e) Scale 2B

Full credit: Valid explanation.
Partial credit: Mention of "Factor" or 20 or "middle".

(f) Scale 5B

Do not penalise candidate for incorrect set notation.
Full credit: $\quad 16$ placed in correct region and valid reason.
Partial credit:
16 placed in correct region or valid reason.
16 placed in correct region but unsound reason. $(A \cup B)$ written down.

QUESTION 7

(a) and (b) and (c) Scale 5C

High partial credit: 5 correct roundings.
Low partial credit: 1 correct rounding.
(d) Scale 5C

High partial credit: 4 correct roundings.
Low partial credit: 1 correct rounding.
Exact cost correctly calculated ($€ 9 \cdot 92$).
(e) Scale 5A

Credit is dependent on answer in part (d).

(f) Scale 10B

Partial credit: Evidence of addition.

(g) Scale 5B

Partial credit: Correct method or correct reason. Correct method but unsound reason. Incorrect method but gives a valid reason.

QUESTION 8

(a) Scale 5A

Accept $€ 25$ or $€ 5$.
(b) Scale 5C

High partial credit: 3 correct entries.
Low partial credit: 1 correct entry.
(c) Scale 2B

Full credit: $\quad y=5 \mathrm{n}+20$.
$5 n+20$ only.

Partial credit: $\quad € 5$ or $€ 20$.
(d) Scale 5B

Full credit: \quad Correct answer using formula/counting method.
Partial credit: An effort to use formula.
Counting method without conclusion (must go beyond week 5).
Trial and error with work.
(e) Scale 5A
(f) Scale 2B
$\begin{array}{ll}\text { Partial credit: } & \text { Correct answer or correct reason. } \\ \text { Correct answer but unsound reason. } \\ \text { Incorrect answer but gives a valid reason. } \\ & \text { An effort to use formula/counting method using week } 5 \text { as the starting point. }\end{array}$

QUESTION 9

(a)(i) Scale 5C

High partial credit: 8-3-2.
a and b mixed-up but finished correctly $(-2+12-2=8)$.
Low partial credit: A correct substitution.
(a)(ii) Scale 5C

High partial credit: $16+1+4$.
a and b mixed-up but finished correctly $(1+16+4=21)$.
Low partial credit: A correct substitution.
(a)(iii) Scale 15C

High partial credit: $\frac{4-2}{2}$.
a and b mixed-up but finished correctly $\left(\frac{7}{2}\right)$.
Low partial credit: A correct substitution.
(b) Scale 2B

Full credit:

$$
x^{2}+4 x-6 x-24
$$

Partial credit: A correct multiplication of terms.
An effort to distribute the brackets.
An effort to set-up the area model.

QUESTION 10

(a) and (b) Scale 10D

Accept only 11ax highlighted/crossed out and 3y, for part (a).
Full Credit: \quad (a) and (b)(i) and (b)(ii) and (b)(iii) and (b)(iv) correct.

High partial credit: Any 3 from (a)/(b)(i)/(b)(ii)/(b)(iii)/(b)(iv) correct.

Partial credit: \quad Any 1 from (a)/(b)(i)/(b)(ii)/(b)(iii)/(b)(iv) correct.

Low partial credit: Correct 3 terms highlighted. (part a)
HCF only (3y). (part a)
A correct effort at factorising. (part b)
A correct effort at substitution into quadratic formula. (part b)

QUESTION 11

(a) Scale 2B

Partial credit: $\quad 3 x-8$.
Correct answer, not from equation, without work. $3(7 x+4)-8$.
(b) Scale 2B

Full credit: \quad Correct roots by trial and error provided both are verified.
$\begin{array}{ll}\text { Partial credit: } \quad & \text { Factors of } x^{2} \text { or } 10 . \\ & \text { A correct substitution into quadratic formula. } \\ & \text { An effort to obtain a root by trial and error with work. }\end{array}$

QUESTION 12

(a) and (b) Scale 2B

Full Credit.
(a) and (b) correct.

Partial credit: A correct transposing.
A correct point indicated on the number line.
Correct testing of inequality for 1 value.
(c)(i) and (c)(ii) and (c)(iii) Scale 5C

Full Credit: (c)(i) and (c)(ii) and (c)(iii) correct.
High partial credit: Any 2 from (c)(i)/(c)(ii)/(c)(iii) correct.
Low partial credit: Any 1 from (c)(i)/(c)(ii)/(c)(iii) correct.

QUESTION 13

(a) Scale 2A
(b) Scale 5A

Accept answer in the range [275-325].
(c) Scale 5A
(d) Scale 5A
(e) Scale 5A
(f) Scale 5B

Partial credit: \quad Correct year or value.
(g) Scale 2B

Partial credit: Correct line identified and no explanation.
Negative slope mentioned only.

QUESTION 14

Scale 5C

Full credit: $\quad 3$ correct matches.
High partial credit: 2 correct matches.
Low partial credit: 1 correct match.

QUESTION 15
 MARKING SCHEME
 JUNIOR CERTIFICATE EXAMINATION 2012 PROJECT MATHS (PHASE 2) - ORDINARY LEVEL- PAPER 1

GENERAL GUIDELINES FOR EXAMINERS

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions
- Slips- numerical errors
- Misreadings (provided task is not oversimplified)
(-1).
Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3, ..., S1, S2,..., M1, M2, ..etc. These lists are not exhaustive.

2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts - even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5 \cdot 50$ may be written as $€ 5,50$.

QUESTION 15

Part (a) Domain

$$
\text { Domain }=\{1,2,3,4\}
$$

Slips (-1)
S1 Each incorrect element omitted / included other than the misreading below.

Misreadings (-1)

M1 Correct range $\{a, b, c\}$ or $\{a, a, b, c\}$ given.
Worthless (0)
W1 No element of the domain appears.
Part (a) Range
5 marks
Att 2

$$
\text { Range }=\{a, b, c\}
$$

*Accept $\{a, a, b, c\}$ for full marks.
Slips (-1)
S1 Each incorrect element omitted / included other then the misreading below.

Misreadings (-1)

M1 Correct domain $\{1,2,3,4\}$ given.

Worthless (0)

W1 No element of the range appears.

Part (b)
Draw the graph of the function

$$
f: x \rightarrow 5+2 x-x^{2}
$$

in the domain $-2 \leq x \leq 4$, where $x \in R$.

$$
\left.\begin{array}{l}
f(x)=5+2 x-x^{2} \\
f(-2)=5+2(-2)-(-2)^{2}=5-4-4=-3
\end{array} \quad \Rightarrow(-2,-3)\right) \text { (-1) } \begin{array}{lll}
\\
f(-1)=5+2(-1)-(-1)^{2}=5-2-1=2 & \Rightarrow(-1,2) \\
f(0)=5+2(0)-(0)^{2} & =5+0-0=5 & \Rightarrow(0,5) \\
f(1)=5+2(1)-(1)^{2} & =5+2-1=6 & \Rightarrow(1,6) \\
f(2)=5+2(2)-(2)^{2} & =5+4-4=5 & \Rightarrow(2,5) \\
f(3)=5+2(3)-(3)^{2} & =5+6-9=2 & \Rightarrow(3,2) \\
f(4)=5+2(4)-(4)^{2} & =5+8-16=-3 & \Rightarrow(4,-3) .
\end{array}
$$

OR

\boldsymbol{A}| $f(-2)$ | $=$ | 5 | $+2(-2)$ | $-(-2)^{2}$ | $=$ | $\mathbf{- 3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(-1)$ | $=$ | 5 | $+2(-1)$ | $-(-1)^{2}$ | $=$ | $\mathbf{2}$ |
| $f(0)$ | $=$ | 5 | $+2(0)$ | $-(0)^{2}$ | $=$ | $\mathbf{5}$ |
| $f(1)$ | $=$ | 5 | $+2(1)$ | $-(1)^{2}$ | $=$ | $\mathbf{6}$ |
| $f(2)$ | $=$ | 5 | $+2(2)$ | $-(2)^{2}$ | $=$ | $\mathbf{5}$ |
| $f(3)$ | $=$ | 5 | $+2(3)$ | $-(3)^{2}$ | $=$ | $\mathbf{2}$ |
| $f(4)$ | $=$ | 5 | $+2(4)$ | $-(4)^{2}$ | $=$ | $\mathbf{- 3}$ |

\boldsymbol{B}

x	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
5	5	5	5	5	5	5	5
$+2 x$	-4	-2	0	+2	+4	+6	+8
$-x^{2}$	-4	-1	0	-1	-4	-9	-16
$f(x)$	$\mathbf{- 3}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{- 3}$

* Error(s) in each row/column calculation attracts a maximum deduction of 3marks

Blunders (-3)

B1 Correct answer, without work i.e. 5 correct couples only and no graph
B2 " $+2 x$ " taken as " 2 " all the way. [In the row headed " $+2 x$ " by candidate]
B3 " 5 " calculated as " $5 x$ " all the way. [In the row headed " 5 " by candidate]
B4 Adds in top row when evaluating $f(x)$ in \boldsymbol{B}.
B5 Omits " 5 " row
B6 Omits " $+2 x$ " row
B7 Omits a value in the domain (each time).
B8 Each incorrect image without work i.e. calculation through the function method (\boldsymbol{A}).
B9 Misreads " $-x^{2}$ " as " $+x^{2}$ " and places " $+x^{2}$ " in the table or function.

Slips (-1)

S1 Numerical errors to a max of 3 in any row / column
Misreadings (-1)
M1 Misreads " $+2 x$ " as " $-2 x$ " and places " $-2 x$ " in the table or function.
M2 Misreads " 5 " as " -5 " and places " -5 " in the table or function.

Attempts (5 marks)

A1 Omits " $-x^{2}$ " row from table or treats " $-x^{2} "$ as $\pm x$ or $\pm 2 x$.
A2 Any effort at calculating point(s).
A3 Only one point calculated and stops.

* Only one correct point graphed correctly \Rightarrow Att $\underline{5}+\operatorname{Att} \underline{5}$
* Correct graph but no table \Rightarrow full marks i.e. $(15+15)$ marks.
* Accept reversed co-ordinates if
(i) if axes not labelled or (ii) if axes are reversed to compensate (see B1 below)

Blunders (-3)

B1 Reversed co-ordinates plotted against non-reversed axes (once only) \{See 3rd * above\}.
B2 Scale error (once only)
B3 Points not joined or joined in incorrect order (once only).

Slips (-1)

S1 Each point of candidate graphed incorrectly. \{Tolerance ± 0.25 \}
S2 Each point $\{7$ points needed $\}$ from table not graphed [See $2^{\text {nd }} *$ above]

Attempts (5 marks)

A1 Graduated axes (need not be labelled)
A2 Some effort to plot a point \{ See 1st * above\}
Part (c)
$10(5,5)$ marks
Att 2, 2
(c) (i) Draw the axis of symmetry of the graph you have drawn in $\mathbf{6}(\mathbf{b})$.
(ii) Use your graph to estimate the value of $5+2 x-x^{2}$ when $x=1 \cdot 5$.
(c) (i) Draw the axis of symmetry of the graph you have drawn in $\mathbf{6}(\mathbf{b})$.

* Accept any vertical line (parallel to candidate's y-axis) within tolerance of ± 0.25.

Blunders (-3)

B1 Any vertical line (parallel to the candidate's y-axis) outside of the tolerance.
B2 Marks $x=1$ on the x-axis and stops.
B3 States $x=1$ but no line is indicated on the graph.

Attempts (2 marks)

A1 Any attempt at axial symmetry of $f(x)$.
A2 y-axis indicated as the axis of symmetry (See B1).

Part (c) (ii)
(c) (ii) Use your graph to estimate the value of $5+2 x-x^{2}$ when $x=1.5$

Work to be shown on the graph and answer to be written here.

* Correct answer (clearly consistent with candidate's graph) inside the tolerance without graphical indication $\Rightarrow 2$ marks.

Blunders (-3)

B1 Correct answer without work.
B2 Answer on the diagram but outside of tolerance (± 0.25).
B3 Fails to write down the answer, when indicated correctly on graph.

Slips (-1)
S1 Correct answer indicated and/or written on graph only

Attempts (2 marks)

A1 Attempts at algebraic evaluation or calculator.
A2 Marks 1.5 in any way on either axis and stops.
Worthless (0)
W1 Answer outside of tolerance without graphical indication.

Coimisiún na Scrúduithe Stáit
State Examination Commission
Scrúdu
an Teastais Shóisearaigh

JUNIOR CERTIFICATE EXAMINATION MARKING SCHEME MATHEMATICS (PROJECT MATHS - PHASE 2) PAPER 2 ORDINARY LEVEL

Coimisiún na Scrúduithe Stáit
State Examinations Commission

Question 1

A designer is making a DVD cover as shown below (diagram not to scale). He has left a space for a photograph. Find the area of the space for the photograph.

$\left.\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}14-1.5=12.5 \\ 12-3.5=8.5 \\ 12.5 \times 8.5 \\ =106.25 \mathrm{~cm}^{2}\end{array} \\ \hline\end{array} \right\rvert\, \begin{array}{l}12 \times 14-[12.5 \times 3.5+12 \times 1.5] \\ =168-[43.75+18] \\ =106.25 \mathrm{~cm}^{2}\end{array}\right]$

Question 2

A gardener wants to build a patio in her garden and a space for a barbeque.
Below is a plan of the patio and barbeque she wants to build.

(a) Find the length of $[B C]$.

(b) Find the perimeter of the patio.

$$
\begin{aligned}
& 3+0 \cdot 5+2 \cdot 5+0 \cdot 5+3+3 \cdot 5+8 \cdot 5+3 \cdot 5 \\
& =25 \mathrm{~m}
\end{aligned}
$$

(c) The owner wants to cover the patio with slabs. Find the area to be covered.
$8.5 \times 3.5-2.5 \times 0.5$
$=29.75-1.25$
$=28.5 \mathrm{~m}^{2}$
(d) The slabs are squares of side 0.5 m . Find the number of slabs required.

| | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | |

(e) She has $€ 500$ to spend on slabs. The slabs cost $€ 4 \cdot 50$ each. Does she have enough money to cover the entire patio? Explain your answer.

Question 3

(suggested maximum time: $\mathbf{1 0}$ minutes)
(a) Caoimhe travelled by car from Athlone to Sligo. She left Athlone at 8:45 a.m. and arrived in Sligo at 10:30 a.m. How long did it take Caoimhe to travel from Athlone to Sligo?
Give your answer in hours and minutes.

(b) The distance from Athlone to Sligo is 112 km .

Find Caoimhe's average speed, in km per hour.

$$
\frac{112}{1 \mathrm{hr} 45 \mathrm{mins}}=\frac{112}{1.75}=64 \mathrm{~km} / \mathrm{hr}
$$

(c) Caoimhe travels a certain 5 km stretch of road in 4 minutes at a constant speed. Find how far she travels in one minute, on this stretch.

(d) Find her speed for this stretch of road in km / h.

		$\begin{aligned} & 1 \cdot 25 \times 60 \\ & =75 \mathrm{~km} / \mathrm{h} \end{aligned}$																							

(e) The speed limit for this stretch of road is $80 \mathrm{~km} / \mathrm{h}$. From your answer in part (d) above, was Caoimhe driving over the speed limit? Give a reason for your answer.

Question 4

(a) Let A be the set of months of the year. List the elements of A.

(b) What is the probability that a month chosen at random from set A begins with the letter J ?

$$
\mathrm{P}(\mathrm{~J})=\frac{1}{4}
$$

Question 5

Karen went on holidays for two weeks in August 2011. Below is a record of the daily temperatures for the two weeks in August 2011.

Day	Temperature
Monday $15^{\text {th }}$	17°
Tuesday $16^{\text {th }}$	18^{0}
${\text { Wednesday } 17^{\text {th }}}^{16^{\circ}}$	
Thursday $18^{\text {th }}$	17°
Friday $19^{\text {th }}$	16°
Saturday $20^{\text {th }}$	18^{0}
Sunday $21^{\text {st }}$	17°
Monday $22^{\text {nd }}$	19°
Tuesday $23^{\text {rd }}$	17°
Wednesday $24^{\text {th }}$	15°
Thursday $25^{\text {th }}$	15°
Friday $26^{\text {th }}$	15°
Saturday $27^{\text {th }}$	14°
Sunday $28^{\text {th }}$	17°

(a) What was the temperature on Thursday $18^{\text {th }}$ of August?
(b) Use a line plot to show the number of times each temperature was recorded.

(c) What is the range of the data?
$\underline{5}$
(d) What is the mode of the data?
(e) Karen says that "on average it was warmer during the first week than the second week of my holiday". Do you agree with Karen? Explain your answer.

Question 6

There are 22 players on the Irish rugby squad for a game. Their heights (in centimetres) are given below.
$180,188,185,180,183,177,180,183,198,191,191$,
$185,185,180,185,196,180,188,180,183,191,193$
(a) What is the height of the tallest player?

198 cm

(b) How many of the players are over 184 cm in height?
(c) What percentage of the players are below 181 cm in height? Give your answer correct to the nearest whole number.

The arm spans (in centimetres) of the same players in the same order are given below.

$$
\begin{aligned}
& 180,184,188,178,182,176,180,185,201,190,189 \\
& 185,186,182,182,196,181,189,178,184,190,193
\end{aligned}
$$

(d) Find the median arm span.

(e) Complete the table below to show the height and arm span of the tallest and shortest player in the squad.

Player	Height	Armspan
Tallest (cm)	$\mathbf{1 9 8}$	$\mathbf{2 0 1}$
Shortest (cm)	$\mathbf{1 7 7}$	$\mathbf{1 7 6}$

(f) Write the ratio of height to arm span for (i) the tallest player and (ii) the shortest player in part (e).

(g) Write each ratio in (f) above as a decimal. Give your answer correct to two decimal places.

Tallest:		0.99	Shortest:	1.01		

(h) The coach is 170 cm tall. What would you expect his arm span to be? Give a reason for your answer.

Question 7

In a survey, 1500 people were asked which national radio station they normally listen to.
The results of the survey are given in the table below.

	RTE1	Today FM	Newstalk	Lyric FM	2FM	No national station
Frequency	375	195	120	45	165	600
Relative frequency (as a fraction)	$\frac{375}{1500}$	$\frac{195}{1500}$	$\frac{120}{1500}$	$\frac{45}{1500}$	$\frac{165}{1500}$	$\frac{600}{1500}$
Relative frequency (as a decimal)	$0 \cdot 25$	$0 \cdot 13$	$0 \cdot 08$	$0 \cdot 03$	$0 \cdot 11$	$0 \cdot 4$

(a) How many of the people surveyed do not listen to a national radio station?

$$
\begin{aligned}
& 375+195+120+45+165=900 \\
& 1500-900=600
\end{aligned}
$$

(b) Complete the table above.
(c) Find the sum of the relative frequencies written as fractions.

$$
\frac{375}{1500}+\frac{195}{1500}+\frac{120}{1500}+\frac{45}{1500}+\frac{165}{1500}+\frac{600}{1500}=\frac{1500}{1500}=1
$$

(d) Find the sum of the relative frequencies written as decimals.

(e) Jackie wrote the relative frequencies as percentages. She found their sum to be 80%. Do you think her calculations are correct? Give a reason for your answer.

(f) Denis looked at the data and said "I can find out how many people in the survey normally listen to local radio". Do you agree or disagree with Denis? Explain your answer.

Question 8

Jack rolls a fair die and spins a fair spinner as shown.

Die

Spinner
(a) Complete the table below showing all possible outcomes.

		Spinner			
		\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
	$\mathbf{1}$	$(1, \mathrm{~A})$	$(1, \mathrm{~B})$	$(1, \mathrm{C})$	$(1, \mathrm{D})$
	$\mathbf{2}$	$(2, \mathrm{~A})$	$(2, \mathrm{~B})$	$(2, \mathrm{C})$	$(2, \mathrm{D})$
	$\mathbf{3}$	$(3, \mathrm{~A})$	$(3, \mathrm{~B})$	$(3, \mathrm{C})$	$(3, \mathrm{D})$
	$\mathbf{4}$	$(4, \mathrm{~A})$	$(4, \mathrm{~B})$	$(4, \mathrm{C})$	$(4, \mathrm{D})$
	$\mathbf{5}$	$(5, \mathrm{~A})$	$(5, \mathrm{~B})$	$(5, \mathrm{C})$	$(5, \mathrm{D})$
	$\mathbf{6}$	$(6, \mathrm{~A})$	$(6, \mathrm{~B})$	$(6, \mathrm{C})$	$(6, \mathrm{D})$

(b) How many possible outcomes are there?

(c) How many outcomes consist of an odd number and B?

(d) What is the probability that an outcome will contain an even number?

Question 9

(a) Four angles are show below. Write in the space below each diagram whether the angle is straight, acute, obtuse, right or reflex.

obtuse	right	reflex	acute

(b) In the diagram below $l_{1} \| l_{2}$. Write the measure of each angle shown by an empty box into the diagram, without using a protractor.

Question 10

The diagram below shows the letter F on the co-ordinate plane.
(a) Draw in the image of the letter F under an axial symmetry in the y-axis.

(b) Write down the coordinates of the points B and C.
${ }_{B}($
-1
5)
$c(-2,3)$
(c) A, B and C are mapped onto A^{\prime}, B^{\prime} and C^{\prime} under the transformation above. Write down the co-ordinates of A^{\prime}, B^{\prime} and C^{\prime}.
$A^{\prime}($
4
1
)
$B^{\prime}($
1 ,
$5) c($
2
3)

A boat travels due north from A for 30 minutes at $20 \mathrm{~km} / \mathrm{h}$. It reaches B and then travels due east for 24 minutes at $10 \mathrm{~km} / \mathrm{h}$. It is then at C.

(a) How many kilometers has the boat travelled?

(b) On the diagram, draw a line segment that shows the shortest distance from C back to A.
(c) Use Pythagoras' theorem to calculate the shortest distance from C to A. Give your answer correct to the nearest metre.

Question 12

(a) The diagram below shows the angle A in a right-angled triangle. Indicate which side is adjacent and which is opposite in relation to the angle A, and which side is the hypoteneuse.

(b) Fill in the appropriate ratios in the table below.

Trigonometric Ratio	Ratio
Sin	$\frac{\text { opposite }}{\text { hypotenuse }}$
$\operatorname{Cos} A$	$\frac{\text { adjacent }}{\text { hypotenuse }}$
\tan	$\frac{\text { opposite }}{\text { adjacent }}$

(c) In the right angled triangle below $B=35^{\circ}$ and the opposite side is 12 cm . Find the length of the hypotenuse correct to the nearest centimetre.

Question 13

Seán makes a clinometer using a protractor, a straw, a piece of thread and a piece of plasticine (used as a weight). He stands 10 m from a tree and uses his clinometer to measure the angle of elevation to the top of the tree as shown. Seán is 1.75 m in height.

(a) Find the angle of elevation by reading the clinometer above.
65°
(b) Calculate the height h as shown in the diagram. Give your answer correct to two decimal places.

(c) Find the total height of the tree.

(d) Another student uses the same method as Seán and finds the height of the tree to be $23 \cdot 1 \mathrm{~m}$. Seán did not get this answer. Give one possible reason why the answers might be different.

Question 14

(a) Write down the coordinates of point A and point B on the diagram.

(b) Mark in the point $D(6,8)$ on the diagram.
(c) Find the co-ordinates of C, the midpoint of $[A B]$.

$$
\left(\frac{1+11}{2}, \frac{1+1}{2}\right)=(6,1)
$$

(d) Join A to D. Join B to D. Join C to D.
(e) Use the distance formula to find $|A D|$ and $|B D|$.

$\sqrt{(6-1)^{2}+(8-1)^{2}}$
$\sqrt{25+49}$
$\sqrt{74}$

$$
\begin{aligned}
& \sqrt{(6-11)^{2}+(8-1)^{2}} \\
& \sqrt{25+49} \\
& \sqrt{74}
\end{aligned}
$$

(f) What type of triangle is $A B D$? Give a reason for your answer.

Type:	Isosceles. - Reason:	Two sides are the same from (e) above.				

(g) State whether the triangles $A C D$ and $B C D$ are congruent. Give a reason for your answer.

Answer: Reason:						Yes, they are congruent.$\begin{aligned} & \mathbf{A C}=\mathbf{B C} \\ & \mathbf{A D}=\mathbf{B D} \\ & \mathbf{C D}=\mathbf{C D} \end{aligned}$								
							$\therefore \quad \mathbf{S ~ S ~ S}$							
							$\cdots \mathrm{S} \mathrm{S} \mathrm{S}$							

Question 15

The height of a watercress seedling over six days is shown in the diagram below.

(a) The plant grows steadily between A and B. It does not grow during two periods. Identify these two periods from the graph.

	Period 1:				B to C																					
	Period 2:						D to E																			

(b) Find the slope of $A B=$ \square

| $\frac{\text { Rise }}{\text { Run }}=\frac{1}{2}(=0.5)$ | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| | | | | | | |
| Rise | $=\frac{0.5}{1}(=0.5)$ | | | | | |
| Run | | | | | | |

(d) Janet says that the seedling grows at the same rate in the two growing periods. Do you agree with Janet? Give a reason for your answer.

(e) Describe the growth of the seedling over the six days.

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	A	B	C	D
No of categories	2	3	4	5
2 mark scale	0,2	$0,1,2$		
5 mark scale	0,5	$0,3,5$	$0,3,4,5$	
10 mark scale	0,10	$0,6,10$	$0,5,8,10$	$0,5,7,8,10$
15 mark scale		$0,10,15$	$0,7,13,15$	

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors
 A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right(partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving incorrect rounding or omission of units, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk. Thus, for example, scale 10C* indicates that 9 marks may be awarded.

Summary of mark allocations and scales to be applied.

Question 1(15)
15C*

Question 4(10)
(a) $\&(b) \quad 10 \mathrm{C}$

Question 2(27)

(a)	$10 \mathrm{~B}^{*}$
(b)	$5 \mathrm{~B}^{*}$
(c)	$5 \mathrm{~B}^{*}$
(d)	2 B
(e)	5 B

Question 5(20)

(a)	5 A
(b)	5 B
(c) $\&(\mathrm{~d})$	5 C
(e)	5 B

Question 8(20)
(a) 5 C
(b) 5 B
(c) 5 B
(d) 5 B

Question 10(5)
(a) $\&(\mathrm{~b}) \&(\mathrm{c}) \quad 5 \mathrm{C}$

Question 13(20)
$\begin{array}{ll}\text { (a) } & 10 \mathrm{~A} \\ \text { (b) } \&(\mathrm{c}) & 5 \mathrm{C}^{*} \\ \text { (d) } & 5 \mathrm{~B}\end{array}$
(d) 5 B

Question 11(10)

(a)
a) 5 B
(b) \&(c) 5C

Question 14(27)
(a) 5 B
(b) $\quad 5 \mathrm{~A}$
(c) $\quad 2 \mathrm{~B}$
(d) 5 B
(e) $5 \mathrm{C}^{*}$
(f) $\&(\mathrm{~g}) \quad 5 \mathrm{C}$

5C
$-10 \mathrm{~B}$
(e) 5 B
(f) 5 B
(a) 5 B
(b) $\quad 5 \mathrm{~B}$

2B

B

Question 3(25)
(a) $\&(\mathrm{~b}) \quad 5 \mathrm{C}$
(c) $5 B^{*}$
(d) $10 \mathrm{~B}^{*}$
(e) 5 B

Question 6(24)

(a)	$5 B^{*}$
(b)	5 B
(c) $\&(\mathrm{~d})$	$5 \mathrm{C}^{*}$
(e)	5 C
(f) $\&(\mathrm{~g})$	$2 \mathrm{~B}^{*}$
(h)	2 B

Question 9(25)
(a) 10 C
(b) 15 C

Question 12(10)
(a)
5B
(b)\&(c) 5C*

Question 15(30)
(a) 15 B
(b) $\&(\mathrm{c}) \quad 5 \mathrm{C}$
(d) 5 B
(e) 5 B

QUESTION 1

(a) Scale 15C*

High partial credit:
8.5(12.5)
$12(14)-[12(1 \cdot 5)+12 \cdot 5(3 \cdot 5)]$

Low partial credit: $12-3.5$ or $14-1.5$
$12 \times 14(168)$ or $12 \times 1 \cdot 5(18)$ or $12 \cdot 5 \times 3 \cdot 5(43 \cdot 75)$

QUESTION 2

Note: * is applied only once in this question.
(a) Scale 10B*

Partial credit: A relevant addition or subtraction (e.g. 6).
(b) Scale 5B*

Partial credit: Identifies 2 relevant sides.
Area calculated correctly (29.75).
(c) Scale 5B*

Partial credit: Correct answer without work.
A relevant area found (e.g. 29.75, 10.5, $7 \cdot 5,1 \cdot 5$ or $25 \cdot 5$).
(d) Scale 2B

Partial credit: \quad An effort at division by 0.25 or 0.5 Use of candidates part (c) or $0 \cdot 5$.
(e) Scale 5B

Partial credit:	Correct answer or valid explanation.
	Correct answer but unsound explanation
	Incorrect answer but gives a valid explanation.
$€ 513$ or $€ 13$.	

QUESTION 3

Note: * is applied only once in this question.
(a) and (b) Scale 5C*

Full Credit: \quad (a) and (b) correct.

High partial credit: (a) or (b) correct.

Low partial credit: $1: 85$ or $2: 25$ or $2: 15$. (part a)
Use of 112 or 1 hr 45 min . (part b)
$1 \mathrm{hr} 45 \mathrm{~min}=1.75 \mathrm{hrs}$. (part b)
Correct formula or $\mathrm{S} / \mathrm{D} / \mathrm{T}$ triangle drawn. (part b)
(c) Scale 5B*

Partial credit: $\quad \frac{5}{4}$ or 5(4).
(d) Scale 10B*

Partial credit: $\quad 1 \cdot 25(60)$.
Writes $1 \cdot 25$ or 60 .
(e) Scale 5B

Note: Credit is dependent on answer to part (d).
Partial credit: Correct answer or valid explanation.
Correct answer but unsound explanation
Incorrect answer but gives a valid explanation.
Yes or no, correct, based on answer to part (d), with no reason.

QUESTION 4

(a) and (b) Scale 10C

Do not penalise candidate for incorrect set notation.
Accept any appropriate abbreviation for a month.
High partial credit: 12 correct months identified.
Correct probability, simplified/unsimplified.
Low partial credit: Correct numerator or denominator.
1 month identified.
$\frac{12}{3}$.

QUESTION 5

(a) Scale 5A
(b) Scale 5B

Tolerance: ± 1 Box
Accept a plot with \bullet x used.
Partial credit: 1 correct entry.
A correct frequency.
Bar chart.
(c) and (d) Scale 5C

Full Credit: (c) and (d) correct.
High partial credit: (c) or (d) correct.
Low partial credit: 14 or 19. (part c)
5. (part d)
(e) Scale 5B

Partial credit: \quad| Correct answer or valid explanation. |
| :--- |
| Correct answer but unsound explanation. |
| |
| Incorrect answer but gives a valid explanation. |
| |
| An effort to get average. |.

QUESTION 6

Note: * is applied only once in this question.
(a) Scale 5B*

Partial credit: A height from data.
(b) Scale 5B

Partial credit: \quad A number in the range [1-11].
(c) and (d) Scale 5C*

Full Credit: (c) and (d) correct.
High partial credit: (c) or (d) correct.
Low partial credit: 7 or 22. (part c)
An effort to rank the numbers. (part d)
$\frac{189+185}{2}$. (part d)
Mean calculated correctly (185•409). (part d)
Mode (182). (part d)
(e) Scale 5C

High partial credit: 3 correct entries.
Low partial credit: 1 correct entry.
(f) and (g) Scale 2B*

Partial credit: A correct numerator or denominator. A correct decimal.
(h) Scale 2B

Partial credit: Correct answer or valid explanation. Correct answer but unsound explanation Incorrect answer but gives a valid explanation.

QUESTION 7

(a) Scale 5B

Partial credit: An effort at addition.
1500-375 or similar.
900.
(b) Scale 5C

High partial credit: 6 correct entries.
Low partial credit: 1 correct entry.
(c) Scale 2B

Partial credit: 1 fraction from table.
(d) Scale 10B

Partial credit: 1 decimal from table.
(e) Scale 5B

Partial credit: $\quad \begin{aligned} & \text { Correct answer or valid reason. } \\ & \text { Correct answer but unsound reason. } \\ & \text { Incorrect answer but gives a valid reason. }\end{aligned}$
(f) Scale 5B

Partial credit: Correct answer or valid explanation.
Correct answer but unsound explanation.
Incorrect answer but gives a valid explanation.

QUESTION 8

(a) Scale 5C

Accept fully correct Tree diagram.
High partial credit: 12 correct entries.
Low partial credit: 1 correct entry.
(b) Scale 5B

Partial credit: $\quad 22$ (ignores 1A and 6D). 6×4.
(c) Scale 5B

Partial credit: 1 correct outcome identified.
15.
(d) Scale 5B

Partial credit: \quad Correct numerator or denominator (allow 22).
1 correct outcome identified.

QUESTION 9

(a) Scale 10C

High partial credit: 3 correct entries.
Low partial credit: 1 correct entry.
(b) Scale 15C

High partial credit: 3 correct entries.
Low partial credit: 1 correct entry.

QUESTION 10
Tolerance: ± 1 box.
Note:
Correct image does not require $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ and C^{\prime} to be specified on the diagram
If image is from any of the following:
Axial Symmetry in the x-axis or Central symmetry in the origin or a Translation then the candidate must specify $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ and C^{\prime} on the diagram for any credit in $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ and C^{\prime}.

(a) and (b) and (c) Scale 5C

Full Credit: Image (a) and 5 points (b and c) correct.
High partial credit: Image (a) or 5 points (b and \mathbf{c}) correct.
Low partial credit: \quad Image of 1 vertex correct. (part a)
Axial Symmetry not in the x-axis. (part a)
Central symmetry not in the origin. (part a)
An image that is not the same size as the object. (part a)
1 point correct. (part \mathbf{b} and \mathbf{c})

QUESTION 11

(a) Scale 5B

Partial credit: $\quad 10 \mathrm{~km}$ or 4 km .
Some substitution into $\mathrm{D}=\mathrm{S} x \mathrm{~T}$
(e.g. 30×20 or 0.30×20 or 24×10 or 0.24×10)
(b) and (c) Scale 5C*

Accept correct trigonometric ratio method.
High partial credit: Line drawn correctly.
$\sqrt{116}$ or 10.77
Low partial credit: 10^{2} or 4^{2}.
A correct substitution into $\mathrm{Sin} / \mathrm{Cos} /$ Tan.

QUESTION 12

(a) Scale 5C

Accept appropriate abbreviations for the sides (e.g. Opposite $\equiv \mathrm{Opp} \equiv O$).
High partial credit: 2 correct entries.
Low partial credit: 1 correct entry.
(b) and (c) Scale 5C*

Accept Sin for Sin A or similar.
Full Credit: (b) and (c) correct.
High partial credit: (b) or (c) correct.
Low partial credit: 1 correct entry. (part b)
$\frac{12}{x} \cdot(\operatorname{part} \mathbf{c})$
$\operatorname{Sin} 35^{\circ}$ or $\operatorname{Cos} 55^{\circ}$. (part c)
Hypotenuse correctly identified on diagram. (part c)

QUESTION 13

(a) Scale 10A

Accept angle $60^{\circ}-70^{\circ}$.
Accept angle $20^{\circ}-30^{\circ}$.
(b) and (c) Scale 5C*

Full Credit: (b) and (c) correct.
High partial credit: (b) or (c) correct.
Low partial credit: $\frac{h}{10} \cdot($ part $\mathbf{b})$
Tan 65° (Tan 25°). (part b)
Sides identified on diagram (e.g. O/H/A). (part b)
Use of candidates height from part (b) or 1•75. (part c)
(d) Scale 5B

Partial credit: Incomplete/unsatisfactory reason but with some element of reasoning.

QUESTION 14
(a) Scale 5B Tolerance: ± 1 box

Partial credit: A or B correct.
(b) Scale 5A Tolerance: ± 1 box
(c) Scale 2B Tolerance: ± 1 box

Accept accurate construction methods.
Partial credit: A substitution into a correct midpoint formula.
A correct construction line/arc.
(d) Scale 5B

Tolerance: ± 1 box
Partial credit: 1 correct line drawn.
(e) Scale 5C*

Accept correct use of Pythagoras theorem.
Full credit: $\quad|A D|$ and $|B D|$ calculated correctly using correct formula.

High partial credit: $|A D| \underline{\text { or }}|B D|$ calculated correctly using correct formula.

Low partial credit: A correct substitution into the distance formula or Pythagoras.
$|A D|$ and $|B D|$ measured correctly $(\approx 8.6 \mathrm{~cm})$.
(f) and (g) Scale 5C

Accept congruency correctly disproved, for part (g) based on work in previous parts.
Full credit: (f) and (g) correct.

High partial credit: (f) or (g) correct.

Low partial credit: Correct type or valid reason. (part f)
Correct type but unsound reason. (part f)
Incorrect type but gives a valid reason. (part f)
Correct answer or valid reason. (part g)
Correct answer but unsound reason. (part \mathbf{g})
Incorrect answer but gives a valid reason. (part \mathbf{g})

QUESTION 15

(a) Scale 15B

B to C can also be identified as (i) from day 2 to day 3 or (ii) at a height of 1 cm . Similarly for D to E.

Partial credit: 1 period correct.
(b) and (c) Scale 5C

Accept $\frac{0.5}{1}$ for part (c).
High partial credit: 1 correct slope.
Low partial credit: 1 correct co-ordinate (A or B or C or D).
$\frac{\text { Rise }}{R u n}$ formula written down.
A correct substitution into slope formula.
(d) Scale 5B

Partial credit: Correct answer or valid reason.
Correct answer but unsound reason. Incorrect answer but gives a valid reason.
(e) Scale 5B

Full credit: \quad Valid description based on specific comments for each of the 4 periods.

Partial credit: Incomplete/unsatisfactory description but with some element of reasoning using the information given.

